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Abstract

This paper proposes a topology optimization for a linear elasticity design

problem subjected to an uncertain load. The design problem is formulated

to minimize a robust compliance that is defined as the maximum compliance

induced by the worst load case of an uncertain load set. Since the robust

compliance can be formulated as the scalar product of the uncertain input

load and output displacement vectors, the idea of “aggregation” used in the

field of control is introduced to assess the value of the robust compliance.

The aggregation solution technique provides the direct relationship between

the uncertain input load and output displacement, as a small linear system

composed of these vectors and the reduced size of a symmetric matrix, in

the context of a discretized linear elasticity problem, using the finite element
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method. Introducing the constraint that the Euclidean norm of the uncertain

load set is fixed, the robust compliance minimization problem is formulated

as the minimization of the maximum eigenvalue of the aggregated symmet-

ric matrix according to the Rayleigh-Ritz theorem for symmetric matrices.

Moreover, the worst load case is easily established as the eigenvector corre-

sponding to the maximum eigenvalue of the matrix. The proposed structural

optimization method is implemented using topology optimization and the

method of moving asymptotes (MMA). The numerical examples provided

illustrate mechanically reasonable structures and establish the worst load

cases corresponding to these optimal structures.

Keywords: Robust design, Worst case design, Topology optimization,

Finite element method, Eigenvalue analysis, Sensitivity analysis

1. Introduction

The search for optimal structural shapes under various conditions is a very

important, challenging and attractive subject for researchers and engineers.

Research on structural optimization has a history spanning more than a

century in both mechanical and mathematical fields, and can be found in

textbooks such as [1, 2, 3, 4, 5, 6, 7]. In particular, topology optimization has

been extensively applied to a variety of structural optimization problems [6]

since Bendsøe and Kikuchi first proposed a so-called homogenization design

method (HDM) [8]. This method offers the greatest potential for exploring

ideal and optimized structures because it allows changes in topology as well

as shape.

Although the physical properties, mechanical conditions and design pa-
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rameters such as Young’s modulus, loading conditions and volume constraints,

etc are treated deterministically in typical optimization problems, these prop-

erties and conditions must contain uncertainties and it is difficult to identify

appropriate values in actual mechanical design problems. To overcome the

effect of uncertainties, a conventional safety factor approach was adopted.

However, this approach might overestimate or underestimate the effect of

uncertainties. Furthermore, there exists a very active research field called

“robust optimization” which treats these uncertainties theoretically. One

significant approach is the “robust counterpart approach”, which remodels

the original problem including uncertainty into a new optimization problem

having feasible solutions for the original problem. This idea was originated

by Soyster [9] for the linear programming problem and early development

was achieved by e.g. Falk [10] and Singh [11]. Important development of the

approach is to be found in the work of Ben-Tal and Nemirovski [12, 13, 14],

El Ghaoui and Lebret [15], El Ghaoui et al. [16] and Bertsimas and Sim [17]

in the context of linear, conic, and quadratic programming. The detail of

the “robust optimization” approaches considering uncertainties can be found

in several comprehensive reviews (e.g. [18, 19, 20, 21] or Chapter 16-21 in

[22]). These methods can provide appropriate robust optimal solutions that

reasonably consider the uncertainties contained in actual design problems.

Recently, in the context of “Robust optimization”, some topology op-

timization methodologies have been proposed. For example, Guest and

Igusa performed continuum topology optimization under loading uncertain-

ties based on multi-loading formulation composed of several load patterns

including the probability function. The methodology has also been extended
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to optimization under the uncertainties of nodal location in truss structures

[23]. Luo et al., performed optimization under a non-probabilistic reliability

constraint based on the convex model [24]. They applied this methodol-

ogy to optimization which considers geometrical non-linearities [25] and ex-

tended the combination model with the probabilistic model [26]. In addition

to structural stiffness optimization, the robust compliant mechanism design

methodology under loading uncertainty was also proposed [27].

From this extensive field of research, in this paper we explore the stiffness

maximization problem of structures considering uncertainties in the loading

conditions (e.g. [23, 27, 28, 29, 30, 31, 32, 33, 34, 35]). As a part of the

robust design for uncertain loads, the stiffness maximization under the worst

load case in a set of prescribed uncertain loads is investigated. When the

uncertainty property is prescribed as a convex set, the problem can be solved

by the so-called convex model method [36]. In the convex model method,

the uncertain parameters are bounded in a convex set such as a hypersphere,

hyperellipsoid or hypercube without assuming a probabilistic distribution.

The worst case is then identified by searching only within the bound of the

convex set, when the criteria are evaluated as a convex function. However, to

perform the optimization based on this concept, a nested optimization loop

is usually performed to find the worst load case in addition to the ordinary

outer optimization loop which updates the design variables.

On the other hand, a methodology that establishes the worst load case

analytically without inner optimization has been proposed [29, 31, 32] based

on the concept of “robust compliance”, which is the work exerted by the

uncertain load. The robust compliance minimization problem can be formu-
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lated as the eigenvalue problem on the domain with respect to the uncertain

loads and displacements [29, 31, 32].

In this study, the linear elastic structural problem is first considered as

a linear operator of the force function on the displacement function before

solving the eigenvalue problem directly. The value of the compliance can be

analyzed using a spectrum method for the linear operator representing the

structural characteristics under the constraint of the norm of the input force

function, although the force function has uncertainty in robust optimization.

Moreover, when the loading domain is limited in a small sub-domain of the

linear elastic domain, it is reasonable to consider the loading sub-domain,

not the full domain to calculate the robust compliance.

In this case, the large linear system of the full domain can be reformulated

into a small linear system of a sub-domain to evaluate the uncertainty of loads

in the limited small loading domain. A small size linear system consisting

of the small loading domain is obtained from the full size linear system by

the “aggregation” approach. The aggregation approach is used in the field of

control for reducing the dimensions of large control systems or state equations

to extract the required element from the large systems for incomplete state

feedback control (see e.g. [37, 38]). This idea is useful in optimization.

Aggregation enables us to formulate the minimum required simple linear

system for optimization to evaluate the relationship of target elements of

the system even if the original problem is very large. In our previous work,

minimization of the detection error of robotics load cells was performed based

on this concept [39].

In this paper, an effective formulation for the topology optimization prob-
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lem is proposed, which is the stiffness maximization problem for the worst

load case. An objective function is first set as the robust compliance for a

linear elastic body. Then, the linear elasticity problem is discretized using

the finite element method. An aggregated linear system composed of the

local uncertain load vector and the local displacement vector defined for the

loading sub-domain and a symmetric matrix connecting them, is constructed

based on the discretized linear elasticity system. According to the Rayleigh-

Ritz theorem for symmetric matrices, the robust compliance minimization

problem is formulated as the minimization problem of the maximum eigen-

value of the matrix. The worst load case is easily established as the eigen-

vector corresponding to the maximum eigenvalue of the matrix. Particularly

for point load problems, the eigenvalue represents the worst loading direction

for the structure at the specified point.

The proposed structural optimization method is implemented using the

topology optimization which achieves the most fundamental optimization

of structures including changes in these topologies (number of holes). The

update of the density function of the topology optimization is performed

based on sensitivity analysis and the method of moving asymptotes (MMA)

[40], which is an optimizer having numerous benefits in various optimization

problems by virtue of its combination with topology optimization (see e.g.

[6] and references therein). The numerical examples are provided to illus-

trate mechanically reasonable structures and establish the worst load cases

corresponding to these optimal structures.
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2. Formulation

2.1. Derivation of the aggregated system based on the finite element method

In this research, the stiffness maximization problem of linear elastic bodies

when applying uncertain body forces, is considered. Let Ω, which is made

of a homogenized isotropic material, be the domain that varies during the

optimization process. The discretized linear elasticity problem using the

finite element method is derived first since the proposed method can be

applied to linear systems with finite dimensions:

KU = F (1)

where K is the stiffness matrix, U and F are the discretized displacement

and force vectors.

For stiffness maximization problems under deterministic loads, the com-

pliance, which is the work exerted by the load, is used as the objective func-

tion (see. e.g. [6]). As well as for the deterministic case, robust compliance

is proposed for uncertain loads (where the load is treated as a function)

[29, 31, 32]. Robust compliance can be formulated as follows using the dis-

cretized form,

c = F TU (2)

Compliance is a function of both the uncertain loads F and the displacement

U .

When the loading domain is a small sub-domain of the linear elastic

domain, most of the elements of the load vector F are zero. Thus, the

dimensions of robust compliance can be reduced as follows.

c = F T
l Ul (3)
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where Fl is the local load vector composed of the non-zero elements of the

global load vector F . Ul is the local load vector corresponding to Fl. The

local force vector Fl and displacement vector Ul can be formulated as follows:

F = HFl, Fl = HTF (4)

Ul = HTU (5)

where H is the matrix connecting the local and global vectors. The reason

for retaining both F = HFl and Fl = HTF in Eq.(4) is that the elements of

the vector F are all zero except for the elements corresponding to Fl. Only

Eq.(5) is defined with respect to the displacement vector U . Using Eq.(1)

and Eq.(4), Ul is also formulated as follows:

Ul = HTU

= HTK−1F

= HTK−1HFl

= CFl

(6)

where:

C = HTK−1H (7)

C is an aggregated symmetric matrix with the same dimensions as the vectors

Fl and Ul. Eq.(6) is an aggregated system of the discretized equilibrium

equation in Eq.(1), which directly shows the relationship between Fl and Ul

used for calculating robust compliance in Eq.(3).
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2.2. Formulation of the eigenvalue problem

Robust compliance in Eq.(3) can also be formulated using the local load

vector Fl and the matrix C as follows:

c = F T
l CFl (8)

The constraint ||Fl|| = 1 is introduced for the uncertain local load vector Fl,

where || · || denotes the Euclidian norm. Under this constraint, the maximum

and minimum of c are evaluated using the Rayleigh-Ritz theorem (see e.g.

Chapter 4 in [41] or Chapter 2 in [42]) as follows:

λmax(C) = max
F T

l CFl

F T
l Fl

= max
||Fl||=1

F T
l CFl (9)

λmin(C) = min
F T

l CFl

F T
l Fl

= min
||Fl||=1

F T
l CFl (10)

where λmax(C) and λmin(C) are the maximum and minimum eigenvalues

of C. More specifically, the maximum robust compliance c is equal to the

largest eigenvalue of the matrix C under the condition ||Fl|| = 1. Thus, min-

imization of the robust compliance will be achieved by minimizing λmax(C).

The following minimization problem of the maximum eigenvalue ofC is equal

to the minimization problem of the robust compliance in Eq.(3).

minimize
Ω

λmax(C) (11)

The condition ||Fl|| = 1 is introduced by pure mathematical reason to use

the Rayleigh-Ritz theorem for robust compliance. However, in compliance

minimization, the optimal results do not depend on the norm of the force.

Thus, this constraint can be extended to the general case other than nominal

norm load cases. On the other hand, the load uncertainty is usually defined
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as a variation from the nominal load condition in the robust optimization

problem. For example, the variation is modeled as a bounded convex set

around the nominal value in the convex model. On the other hand, variation

of the load uncertainty for robust compliance is defined as the bounded set

with a fixed norm. The uncertainty set is modeled as a hypersphere center

on the origin, which is considered a special case of the convex model with

zero nominal value.

Note that the finite element method is used for the derivation of the ag-

gregated linear system in Eq.(6) and the optimization problem in Eq.(11)

above. Thus, the proposed theory is fundamentally based on the finite ele-

ment method and the validity of the proposed theory is still unclear in terms

of functional analysis for the continuum linear elasticity problem. However,

since the computational analysis of the linear elasticity problem is usually

performed by the finite element method, the proposed method is applicable

to most engineering applications.

2.3. Clarification of the worst load case

The worst case compliance optimization was defined as being achieved

by minimizing the maximum eigenvalue of the matrix C. In the above opti-

mization methodology, the worst load case can be established clearly based

on the eigenvector φmax corresponding to the maximum eigenvalue λmax. Let-

ting the worst load case satisfying Eq.(9) be Flworst and multiplying the left

side of Eq.(9) by Flworst
TFlworst = ||Flworst||2 = 1, the following equation is

obtained:

Flworst
TCFlworst = λmax(C)Flworst

TFlworst

= Flworst
Tλmax(C)Flworst

(12)
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That is,

CFlworst = λmax(C)Flworst (13)

The above equation is an eigenvalue equation for the maximum eigenvalue

and the corresponding eigenvector. Thus, the worst load case Flworst can be

established as the eigenvector corresponding to the maximum eigenvalue of

matrix C.

2.4. Topology optimization

Topology optimization is used as an optimizer of the linear elastic domain

Ω since this method can perform the more fundamental optimizations over

arbitrary domains including shape and topology, viz. and the number of

holes. The fundamental concept is to introduce a fixed, extended design

domain D that includes a priori, the optimal shape Ω and utilization of the

following characteristic function :

χ(x) =

 1 if x ∈ Ω

0 if x ∈ D \ Ω
(14)

Using this function, the original design problem of Ω is replaced by a material

distribution problem incorporating an elasticity tensor, χA, in the extended

design domain D, where A is the elasticity tensor of the original material

of Ω. Unfortunately, the optimization problem does not have any optimal

solutions in L∞(D; {0, 1})[5]. A homogenization method is used to perform

the relaxation of the solution space [5, 8]. In this way, the original material

distribution optimization problem with respect to the characteristic function

is replaced by the optimization problem of the “composite” composed of the

original material and a very weak material imitating void with respect to a
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density function. The density function represents the volume fraction of the

original material and can be regarded as a weak limit of the characteristic

function.

The relationship between the material properties of the composite and

the density function must be defined in addressing the optimization prob-

lem. The most widely used method that sets a completely artificial material

property [43, 44, 45], called the “solid isotropic material with penalization”

(SIMP) method, is used in this research. In this method, the relationship

between the material properties of the composite and the density function is

set using the following simple equation with the penalized material density :

A∗ = ρpA (0 ≤ ρ ≤ 1) (15)

where A∗ is the material property of the composite, ρ is the density function

representing the volume fraction of the original material and p is a positive

penalization parameter. This method has the advantage of controlling the

non-linearity between the material property of the composite and the density

function. This has the significant role of avoiding the “gray” domain which

is hard to judge as either a material or a void.

Finally, adding a volume constraint and introducing the vector ρ of the

discretized density function, the topology optimization problem of the dis-

cretized linear elastic domain composed of n finite elements for robust com-

pliance is formulated as follows:

minimize
ρ

λmax(C) (16)
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where

C = HTK−1H (17)

F = HFl (18)

||Fl|| = 1 (19)

0 ≤ ρi ≤ 1, for i = 1, ..., n (20)

V olume(ρ) ≤ V U (21)

where V olume(·) denotes the function calculating the volume of the domain,

and V U is the upper limit of the volume.

3. Numerical implementation

3.1. Computation of the matrix C

Since the equation of the matrix C, Eq.(7) contains the inverse matrix

of the stiffness matrix and the computation has a high cost, this equation is

reformulated by introducing the adjoint variable matrix Z as follows:

C = HTK−1H

= ZTH

= ZTKZ

(22)

where:

KZ = H (23)

The computational cost for the adjoint variable matrix Z is reasonable, and

is equal to the number of columns of the matrix H multiplied by the cost
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for solving the ordinal equilibrium equation in Eq.(18). When the number of

degrees of freedom of the loading domain is large, a number of linear systems

must be solved to calculate Z. In this case, an additional technique will be

required to reduce the computational cost such as first performing the LU

decomposition of K and repeating only forward and backward substitutions

to solve these linear systems.

The effectiveness of the proposed formulation is confirmed by a numerical

experiment. Let K be a 10299 × 10299 sparse symmetric matrix with the

condition number 473548.15 and H be a 10299 × 99 matrix. This setting

corresponds to the 2D distributed load example mentioned below. The ma-

trix C is calculated using one of the following three methods: 1) Calculate

Eqs.(22) and (23) by a direct method which is the first LU decomposition

and repeat the forward and backward substitutions, 2) Calculate (22) and

(23) by an iterative method which is the preconditioned conjugate gradient

method, 3) Calculate Eq.(7) directly by forming K−1 with LU decomposi-

tion. Table 1 shows the computational times for each method. The direct

method for Eqs.(22) and (23) has the shortest computational time. Even if

the direct method is not available because of memory limitations, the solu-

tion can be obtained using the iterative method with a shorter computational

time than the original formulation. The original formulation had the worst

computational time and, moreover, required a significant amount of memory

to handle K−1.
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Table 1: Comparison of computational times for calculating the matrix C

Calculation method Algorithm Time(s)

Direct method for Eqs.(22) and (23) LU decomposition 1.40

Iterative method for Eqs.(22) and (23) Preconditioned conjugate gradient method 38.89

Original formulation in Eq.(7) LU decomposition 99.11

*The numerical experiment condition - CPU:Intel Core i7-980X Extreme Edition,

Memory:24GB, OS:Windows7 Ultimate 64bit, Language and Compiler:Matlab 2009a.

3.2. Sensitivity analysis

To perform optimizations, the method of moving asymptotes (MMA) [40],

which requires a first-order sensitivity analysis of the objective function with

respect to the design variable ρ, is used. The sensitivity of the maximum

eigenvalue of the matrix C with respect to the i-th design variable ρi can be

calculated as follows: (see e.g. [46]).

∂λmax (C)

∂ρi
= φmax

T ∂C

∂ρi
φmax (24)

where φ denotes the normalized eigenvector.

When the above maximum eigenvalue is a repeated eigenvalue, it is not

differentiable in the normal sense. In this case, directional derivatives can

only be obtained by solving the following eigenvalue problem [46, 47].

M =
∂λj (C)

∂ρi
a, M ∈ Rs×s, a ∈ Rs (25)

where:

Mij = φi
T ∂C

∂ρi
φj, i, j = 1, ..., s (26)
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s is the number of the repeated eigenvalue, M is the s × s matrix whose

components are represented as Eq.(26), a is the s−dimensional eigenvector

representing the derivative directions.

The matrix C has a similar form to the compliance matrix UTKU .

Thus, ∂C/∂ρi is calculated simply using the matrix Z in a similar way (see

e.g. [6]). First, the equilibrium equation in Eq.(1) is substituted into Eq.(22)

using another adjoint variable matrix L as follows:

C = ZTKZ −LT (KZ −H) (27)

Calculating ∂C/∂ρi using the above formulation, the following equation can

be obtained:
∂C

∂ρi
=

(
HT −LTK

) ∂Z
∂ρi

−LT ∂K

∂ρi
Z (28)

If L satisfies the following adjoint equation, the first term of the above equa-

tion vanishes:

KL = H (29)

Since this is the same equation as Eq.(23), Z can be used instead of L.

Finally, ∂C/∂ρi is obtained as follows:

∂C

∂ρi
= −ZT ∂K

∂ρi
Z (30)

3.3. Filtering method

The SIMP method is used in this research. In the 2D problem, the

SIMP method can encounter a numerical instability known as a checkerboard

pattern [48, 49]. One way to prevent this problem is to use a so-called filtering

technique (see [50] and the references therein). In this research, filtering is
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implemented based on the projection method [51]. This method sets the

design variables in addition to the density function and “projects” the design

variable onto the density function using a projection function. By adjusting

the effective range and shape of the function, the checkerboard problem can

be avoided. The above functions are calculated numerically by appropriate

discretization. Although the discretized design variable function was set to

the nodes of the finite element mesh in the original paper [51], the function

is discretized at the center of the element mesh in this research. With this

method, a new projected density function µ is established, and its value

calculated at the i-th control point, is as follows :

µ(xi) =

∑
j∈Si

ρ(xj)wi(xj − xi)∑
j∈Si

wi(xj − xi)
(31)

where:

Si = {j | xj ∈ Ωpi} (32)

Ωpi(xi) = {x | ||x− xi|| ≤ rmin, x ∈ D} (33)

where xi is the location of the center of the i-th element, Ωpi is the effective

circular area of the projection function wi set on the the center of the i-th

element, Si is the set of indices for the control points in Ωpi, ρ(xj) is the value

of the original density function at the center of the j-th element, and rmin is

the radius of the effective area of the projection function. The function wi is

a linear weighting function defined as :
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w(x− xi) =


rmin − ||x− xi||

rmin

if x ∈ Ωpi

0 if x ∈ D \ Ωpi

(34)

3.4. Algorithm

Based on the above numerical implementation techniques, the optimiza-

tion procedure is constructed as follows:

1. Set an initial shape.

2. Iterate the following procedure until convergence:

(a) Calculate the matrix C by the finite element method.

(b) Calculate the objective function, λmax(C), and the total volume.

(c) Calculate the sensitivities of the objective function and the total

volume.

(d) Based on the sensitivities, update the design variables using the

method of moving asymptotes (MMA) [40].

The proposed methodology is a minimization of the maximum eigenvalue

problem which contains an inherent discontinuity and is hard to solve using

the ordinal gradient based algorithm. In other words, if the target eigenvalue

remains a repeated eigenvalue during the optimization iterations, it will be

difficult to converge it to an optimum using the proposed MMA based op-

timization algorithm, even if the directional sensitivity in Eq.(25) is used.

Such types of problem are outside the capacity of the proposed algorithm.

Some sub-gradient type algorithms were proposed for these types of prob-

lem (e.g. [47, 52]). Depending on the problems, these algorithms should be

introduced instead of the proposed MMA based algorithm.
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4. Numerical example

The following numerical examples are provided to confirm the validity of

the proposed method. All examples assume a virtual material with a normal-

ized Young modulus E of 1.0 and a Poisson ratio ν of 0.3. The parameter rmin

for the projection method used in Eq.(33) is set to 1.5 times the mesh size.

Quadrangular and hexahedral isoparametric elements are used for discretiza-

tions in 2D and 3D, respectively. All optimal configurations are plotted as

the distribution of the filtered density function of the optimal results.

4.1. 2D point load examples

4.1.1. Cantilever examples

As a benchmark problem for the proposed method, robust compliance

minimization of a cantilever is performed as illustrated in Fig.1. The design

domain is a 2× 1 rectangle with a fixed boundary condition on the left side.

The applied point of an uncertain load is set at the center of the right side.

The minimized objective function is formulated as the highest eigenvalue of

matrix C in Eq.(7). The volume constraint is set to 40% of the total volume.

The domain is discretized with a 100×50 rectangular mesh. The initial value

of the density function is 0.4 in all areas of the domain. The penalization

parameter p in Eq.(15) is set to 1 and 3.

Figure 1 is about here.

Figure 2 shows the optimal configurations obtained after 100 iterations

with p = 1 and 3. The optimal configuration is very similar to the typical
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optimal configuration of the deterministic cantilever example [6]. Figure 3

shows the convergence history of the largest and second largest eigenvalues

of the matrix C. Since the size of the matrix C is 2 × 2, these eigenvalues

correspond to the second and first eigenvalues. Smooth convergence of these

eigenvalues can be observed in both cases.

Figure 4 shows the plots of the set of local load vectors Fl constrained

by ||Fl|| = 1 and the set of displacement vectors Ul corresponding to these

load vectors in Eq.(6) for the initial and optimal configurations obtained with

p = 3. Since both vectors Fl and Ul have only 2 dimensions, they can be

plotted on the plane. The set of Fl is represented as a unit circle. The circle

is deformed to an ellipsoid by matrix C and this represents the set of the

displacement vector Ul. The eigenvector of matrix C is also shown in Fig.4.

The normal and dotted arrows represent the second and first eigenvectors.

The direction of the long axis of the ellipsoid, which is equal to the direction of

the second eigenvector, is vertical. This indicates the loads with the vertical

direction, (0, 1) and (0,−1) are the worst load cases in this example. This

is a reasonable result in terms of the structural mechanics since horizontal

cantilevers are clearly weaker with a vertical load than with a horizontal load.

Figure 5 shows the history of the angle of the eigenvector representing the

worst load direction with p = 1 and 3. Since these results were identical, only

one line is shown in this graph. During the iteration, the direction stayed at a

constant value of π/2. This indicates that, as a result, stiffness optimization

against the vertical load was performed during the optimization process.

Figures 2,3,4,5 are about here.
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To confirm the initial dependency of the proposed optimization problem,

the optimization is performed with different initial shapes as shown in Fig.6.

Figure 7 shows the optimal configurations obtained after 100 iterations with

p = 1 and after 1000 iterations with p = 3. In the case of p = 1, the same

results were obtained with Fig.2. In the case of p = 3, the result obtained

with initial shape A is slightly different from Fig.2. However, since a high

value of the parameter p increases the initial dependency, the proposed opti-

mization problem does not have strong initial dependency and non-convexity.

Figure 8 shows the first 10 iteration histories of the angle of the worst load

direction for each case with p = 3. Since the results with p = 1 are identical,

they are omitted. The initial worst load direction of the initial configuration

B is horizontal which is different from the other results. This shows that

the proposed method does not have strong initial dependency even in the

case where the worst load case directions are different in the initial and the

optimal configurations.

Figures 6,7,8 are about here.

4.1.2. Reverse L shaped examples

In the above example, the proposed method optimized the stiffness of a

structure for the unit load with the worst direction. To confirm the utility of

this function, another example is performed. The second target of the 2-D

point load example is a reverse L-shaped design problem as shown in Fig.9.

The top of the structure is fixed and the load point is set to the center of

the left side. This is also a typical benchmark example. However, the worst
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load direction is unclear and different from the previous cantilever example.

The volume constraint is set to 50% of the total volume. The domain is

discretized with a 0.02× 0.02 size rectangular mesh. The initial value of the

density function is 0.5 in all areas of the domain. The penalization parameter

p in Eq.(15) is set to 3.

Figure 9 is about here.

Figure 10 shows the optimal configuration obtained after 100 iterations.

Figure 11 shows the convergence history of the largest (the second) and

second largest (the first) eigenvalues of the matrix C. Figure 12 shows the

plots of the set of local load vectors Fl satisfying ||Fl|| = 1 and the set of

displacement vectors Ul corresponding to these load vectors in Eq.(6) for

the initial and optimal configurations. Figure 13 shows the history of the

angle of the second eigenvector. As shown in Fig.13, the worst load direction

shows slight differences between the initial configuration and the optimal

configuration and changed during the optimization process. The direction

was tracked by the proposed method during the optimization procedure.

Figures 10,11,12,13 are about here.

The results were confirmed by solving the same optimization problem us-

ing the conventional optimization method and the inner optimization prob-

lem for establishing the worst load case. The optimization problem is formu-
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lated as follows :

minimize
ρ

maximize
Fl, ||Fl||=1

F TU (35)

Since a point unit load is assumed in this example, the nested optimiza-

tion problem can be solved by an optimization problem with a single design

variable which is the loading angle. The problem is solved using the golden

section search. The outer problem is the ordinary compliance minimization

problem for the worst load case of each iteration. Figure 14 shows the op-

timization after 100 iterations. Since this result is quite similar to the one

obtained by the proposed method, its validity was confirmed.

Figure 14 is about here.

The result is also compared with those obtained by minimizing the ordinal

deterministic compliance under the horizontal and vertical loads at the load

point. Figure 15 shows optimal configurations for these load cases. Except

for the objective function, all optimization conditions were the same as in

this example. The worst load directions of these optimal configurations were

established by calculating eigenvectors of the matrixC. The worst load direc-

tions of Fig.15(a) and (b) are (−0.0982,−0.9952)T and (0.8223,−0.5690)T .

Figure 15(a) certainly shows a weak stiffness for the vertical loads. To con-

firm the robustness of these structures, each of the optimal configurations

shown in Fig.10 and Fig.15 was applied to its own the worst load and the

most undeformable load case, and each compliance was calculated. The

most undeformable load cases can be calculated as the first eigenvector of

the matrix C. Table 2 shows the comparison of these results. The optimal
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configuration obtained by the proposed method had the highest performance

for the worst load case. Moreover, it also achieved the lowest ratio between

the compliance for the worst load case and the most undeformable load case,

which is an important index of robustness.

Figure 15 is about here.

Table 2: Compliances of optimal configurations for the worst load cases and the most

undeformable load cases

Optimal configuration in Fig.10 Fig.15(a) Fig.15 (b)

For the worst load case 95.7652 342.8997 123.4389

For the most undeformable load case 74.7486 24.4768 63.9296

Ratio of these compliances 1.2812 14.0092 1.9309

4.2. 2D distributed load examples

The proposed method was applied to a bridge-like structure under an

uncertain vertical distributed load as shown in Fig.16. The bottom vertexes

of the structure were fixed and the uncertain vertical distributed load was

applied to the bottom. The domain was discretized with a 100× 50 rectan-

gular mesh. Since the load applied to the domain contained 99 nodes and

only vertical forces were considered, C became a 99× 99 symmetric matrix.

The volume constraint was set to 50% of the total volume. The initial value

of the density function was 0.5 in all areas of the domain. The penalization

parameter p in Eq.(15) was set to 3.
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Figure 16 is about here.

Figure 17 shows the optimal configuration obtained after 50 iterations. In

this result, a structure similar to the actual bridge was obtained. Figure 18

shows the convergence history of the largest and second largest eigenvalues

of the matrix C. Smooth convergence can also be observed in the distributed

load example as well as the previous point load examples, while the scale of

the eigenvalue problem was much larger. Figure 19 shows the worst load dis-

tributions for the initial shape and the optimal configuration. These figures

show that the worst load case has varied during the optimization process.

Figures 17,18,19 are about here.

The same optimization was performed with a different mesh discretiza-

tion to confirm the mesh dependency of the proposed method. Due to the

constraint ||Fl|| = 1, the shape of the load distribution can depend on the

number of degrees of freedom considered in the loading domain. The domain

was discretized with a coarser 50 × 25 rectangular mesh than the previous

example. C became a 49 × 49 symmetric matrix. Figure 20 shows the op-

timal configuration obtained after 50 iterations and the corresponding worst

load distribution. Although the values of the worst loads at each node on the

loading boundary were higher than those of the previous example, the out-

line of the worst load distribution and the optimal configuration were quite

similar to it.
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Figure 20 is about here.

The optimal configuration in Fig.17 was compared with the optimal con-

figurations obtained by the deterministic approach. Figure 21 shows the

optimal configurations obtained by minimizing the ordinary deterministic

compliance for a vertical point load at the bottom center, and for a uniform

vertical distributed load on the bottom side, under the same optimization

conditions as for this example. The worst load distributions of these config-

urations are also shown in Fig.22. Each of the optimal configurations shown

in Fig.17 and Fig.21 was applied to its own worst load distribution shown

in Fig.19(b) and Fig.22, and each compliance was calculated. Table 3 shows

the comparison of these results. The optimal configuration obtained using

the proposed method achieved the highest performance for each worst load

distribution.

Figures 21,22 are about here.

Table 3: Compliances of optimal configurations for the worst load cases

Optimal configuration in Fig.17 Fig.21(a) Fig.21(b)

Compliance 0.3089 1.1350 0.3139

4.3. 3D example

The 3D point load problem illustrated in Fig.23 was investigated. The

design domain was a 2.4× 1.2× 2.4 rectangular solid with a fixed boundary
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condition on the left side. The applied point of an uncertain load was set at

the center of the right side. The minimized objective function was formulated

as the highest eigenvalue of matrix C in Eq.(7). The volume constraint was

set to 20% of the total volume. The domain was discretized with a 60×30×60

cubic mesh. The initial value of the density function was 0.2 in all areas of

the domain. The penalization parameter p in Eq.(15) was set to 3.

Figure 23 is about here.

Figure 24 and 25 shows a 0.5 iso-surface plot and the cross-sectional

density distribution on the xz planes of the optimal configuration obtained

after 50 iterations. Figure 26 shows the convergence history of the largest (the

third), second largest (the second) and third largest (the first) eigenvalues

of the matrix C. Although two of the converged eigenvalues seem to have

been switched in iteration 8, the maximum eigenvalue did not become a

repeated eigenvalue and smooth optimization continued. Figure 27 shows a

unit sphere representing the set of the unit local load vectors Fl. Figure 27 (b)

and (c) show the oval sphere representing the set of the displacement vector

Ul corresponding to these load vectors in Eq.(6) for the initial configuration

and optimal configurations. The three eigenvectors of matrix C are also

shown in Fig.27. The third, the second and the first eigenvectors were φ =

(0, 1, 0)T , (0, 0, 1)T , (1, 0, 0)T in the initial and optimal configurations. The

initial and the optimal configurations had the same worst load directions.

The cross section view of the oval sphere on the yz-plane was almost a circle in

the optimal configuration which was different from the initial configuration.
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This indicated the structure had the same stiffness for all unit point loads

in the yz-plane at the loading point and high robustness for loads in the yz-

plane. The robustness was also confirmed from a mechanical point of view.

In Fig.24, the triangular overview yielded the stiffness in the z direction and

two inside horizontal ribs yielded the stiffness in the y direction.

Figures 24,25,26,27 are about here.

As a final example, the 3D distributed load problem illustrated in Fig.28

was performed. The design domain was a 2.4 × 1.2 × 1.2 rectangular solid.

The bottom plane was set to the loading domain and the left and right

edges of the bottom were supported. The minimized objective function was

formulated as the highest eigenvalue of matrix C in Eq.(7). The volume

constraint was set to 20% of the total volume. The domain was discretized

with a 60× 30× 30 cubic mesh. The initial value of the density function was

0.2 in all areas of the domain.

Figure 28 is about here.

Figure 29 shows the optimal configuration obtained after 50 iterations.

A structure similar to the actual bridge was obtained for the 2D distributed

load example. Figure 30 shows the convergence history of the largest and sec-

ond largest eigenvalues of the matrix C. Smooth convergence was observed

without any eigenvalue switching or repeated eigenvalues. Figure 31 shows
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the worst load distributions for the initial shape and the optimal configura-

tion. The peak of the worst load distribution was observed on the center of

the x direction as well as for the 2D example. The shape of the worst load

distribution was varied during optimization due to the three ribs across the

structure.

Figures 29,30,31 are about here.

5. Conclusions

An effective structural optimization methodology for a linear elasticity de-

sign problem subjected to an uncertain load is proposed in this paper. First,

a linear elasticity problem was discretized by the finite element method. An

aggregated linear system composed of the local uncertain load vector and the

local displacement vector defined in the loading sub-domain, and a symmet-

ric matrix connecting them, was constructed based on the discretized linear

elasticity system. The robust compliance minimization problem was then

formulated as the minimization problem of the maximum eigenvalue of the

symmetric matrix, based on the Rayleigh-Ritz theorem for symmetric matri-

ces. The worst load case was established as the eigenvector corresponding to

the maximum eigenvalue of the matrix. This methodology was implemented

as a topology optimization problem using the SIMP method, sensitivity anal-

ysis and the method of moving asymptotes (MMA). The numerical examples

illustrated mechanically reasonable structures and the fact that the worst

load case can be established. The eigenvector represents the direction of the
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worst load at the specified point, particularly for the point load example,

which can be a useful mechanical insight for an actual structural design.

This research is based on the idea of “aggregation” which is a traditional

approach used for reducing the scale of target problems to construct systems

for partially observed states. Representing the mechanical aspects of the

structure as a simple linear system can be effective in structural optimization

when optimizing the fundamental structural characteristic of an uncertain

input. The worst load case for uncertain loads was evaluated in this research,

while the measurement error of the robotic load cells for uncertain measured

loads was evaluated in our previous research [39]. In future research, we

hope to extend the methodology to other structural optimization problems of

systems with uncertain inputs, such as in the design of compliant mechanisms

and multi-physics actuators with uncertain inputs.
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[21] G. Schuëller, H. Jensen, Computational methods in optimization con-

sidering uncertainties–an overview, Comput. Meth. Appl. Mech. Eng.

198 (1) (2008) 2–13.

32



[22] Y. Tsompanakis, N. D. Lagaros, M. Papadrakakis (Eds.), Structural De-

sign Optimization Considering Uncertainties, Taylor & Francis, Leiden,

2008.

[23] J. Guest, T. Igusa, Structural optimization under uncertain loads and

nodal locations, Comput. Meth. Appl. Mech. Eng. 198 (1) (2008) 116–

124.

[24] Y. Luo, Z. Kang, Z. Luo, A. Li, Continuum topology optimization with

non-probabilistic reliability constraints based on multi-ellipsoid convex

model, Struct. Multidisc. Optim. 39 (3) (2009) 297–310.

[25] Z. Kang, Y. Luo, Non-probabilistic reliability-based topology optimiza-

tion of geometrically nonlinear structures using convex models, Comput.

Meth. Appl. Mech. Eng. 198 (41-44) (2009) 3228–3238.

[26] Z. Kang, Y. Luo, Reliability-based structural optimization with prob-

ability and convex set hybrid models, Struct. Multidisc. Optim. 42 (1)

(2010) 89–102.

[27] N. Kogiso, W. Ahn, S. Nishiwaki, K. Izui, M. Yoshimura, Robust topol-

ogy optimization for compliant mechanisms considering uncertainty of

applied loads, J. Adv. Mech. Des. Syst. Manufac. 2 (1) (2008) 96–107.

[28] A. Ben-Tal, A. Nemirovski, Robust truss topology design via semidefi-

nite programming, SIAM J. Optim. 7 (4) (1997) 991–1016.

[29] A. Cherkaev, E. Cherkaeva, Optimal design for uncertain loading condi-

tion. In Homogenization: In Memory of Serguei Kozlov, World Scientific,

Singapore, 1999.

33



[30] M. B. Fuchs, E. Farhi, Shape of stiffest controlled structures under un-

known loads, Comput. Struct. 79 (18) (2001) 1661–1670.

[31] E. Cherkaev, A. Cherkaev, Principal compliance and robust optimal

design, J. Elasticity 72 (1) (2003) 71–98.

[32] E. Cherkaev, A. Cherkaev, Minimax optimization problem of structural

design, Comput. Struct. 86 (13-14) (2008) 1426–1435.

[33] F. de Gournay, G. Allaire, F. Jouve, Shape and topology optimization

of the robust compliance via the level set method, ESIAM COCV 14 (1)

(2008) 43–70.

[34] S. Conti, H. Held, M. Pach, M. Rumpf, R. Schultz, Shape optimiza-

tion under uncertainty - a stochastic programming perspective, SIAM

J. Optim 19 (4) (2009) 1610–1632.

[35] H. Held, Shape Optimization under Uncertainty from a Stochastic Pro-

gramming Point of View, Vieweg+Teubner, Wiesbaden, 2009.

[36] Y. Ben-Haim, I. Elishakoff, Convex Models of Uncertainty in Applied

Mechanics, Elsevier, Amsterdam, 1990.

[37] M. Aoki, Control of large-scale dynamic systems by aggregation, IEEE

trans. automat. contr. 13 (3) (1968) 246–253.

[38] N. Sandell Jr, P. Varaiya, M. Athans, M. Safonov, Survey of decen-

tralized control methods for large scale systems, IEEE trans. automat.

contr. 23 (2) (1978) 108–128.

34



[39] A. Takezawa, S. Nishiwaki, M. Kitamura, E. C. N. Silva, Topology opti-

mization for designing strain-gauge load cells, Struct. Multidisc. Optim.

42 (3) (2010) 387–402.

[40] K. Svanberg, The method of moving asymptotes- a new method for

structural optimization, Int. J. Numer. Meth. Eng. 24 (2) (1987) 359–

373.

[41] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University

Press, New York, 1985.

[42] G. Allaire, S. M. Kaber, Numerical Linear Algebra, Springer, New York,

2008.

[43] M. P. Bendsøe, Optimal shape design as a material distribution problem,

Struct. Optim. 1 (4) (1989) 193–202.

[44] M. P. Bendsøe, O. Sigmund, Material interpolation schemes in topology

optimization, Arch. Appl. Mech. 69 (9) (1999) 635–654.

[45] M. Zhou, G. I. N. Rozvany, The coc algorithm. ii: Topological, geomet-

rical and generalized shape optimization, Comput. Meth. Appl. Mech.

Eng. 89 (1-3) (1991) 309–336.

[46] E. J. Haug, K. K. Choi, V. Komkov, Design Sensitivity Analysis of

Structural Systems, Academic Press, Orlando, FL, 1986.

[47] A. P. Seyranian, E. Lund, N. Olhoff, Multiple eigenvalues in structural

optimization problems, Struct. Optim. 8 (4) (1994) 207–227.

35



[48] A. Diaz, O. Sigmund, Checkerboard patterns in layout optimization,

Struct. Optim. 10 (1) (1995) 40–45.

[49] O. Sigmund, J. Petersson, Numerical instabilities in topology opti-

mization: a survey on procedures dealing with checkerboards, mesh-

dependencies and local minima, Struct. Optim. 16 (1) (1998) 68–75.

[50] O. Sigmund, Morphology-based black and white filters for topology op-

timization, Struct. Multidisc. Optim. 33 (4) (2007) 401–424.

[51] J. K. Guest, J. H. Prévost, T. Belytschko, Achieving minimum length

scale in topology optimization using nodal design variables and projec-

tion functions, Int. J. Numer. Meth. Eng. 61 (2) (2004) 238–254.

[52] L. Krog, N. Olhoff, Optimum topology and reinforcement design of disk

and plate structures with multiple stiffness and eigenfrequency objec-

tives, Comput. Struct. 72 (4-5) (1999) 535–563.

36



List of figures

2

1
Lo a d i n g  p o i n tF i x e d

Figure 1: A cantilever design domain

(a) p = 1 (b) p = 3

Figure 2: Optimal configurations of the cantilever example with p = 1 and 3
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Figure 3: The convergence history of the eigenvalues of the cantilever example
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(a) Initial configuration
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(b) Optimal configuration

Figure 4: Illustrations of mapping from Fl to Ul using the matrix C in the cantilever

example
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Figure 5: The history of the angle of the second eigenvector (the eigenvector corresponding

to the worst load direction) of the cantilever example

(a) Initial configuration A (b) Initial configuration B

Figure 6: Initial configurations of the cantilever design domain
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(a) With initial A and p = 1 (b) With initial A and p = 3

(c) With initial B and p = 1 (d) With initial B and p = 3

Figure 7: Optimal configurations with different initial configurations
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Figure 8: The history of the angles of the second eigenvectors with different initial config-

urations.
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Figure 9: A reverse L shaped design domain

Figure 10: Optimal configurations of the reverse L example
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Figure 11: The convergence history of the eigenvalues of the reverse L example
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(a) Initial configuration
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(b) Optimal configuration

Figure 12: Illustrations of mapping from Fl to Ul using the matrix C in the reverse L

example
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Figure 13: The history of the angle of the second eigenvector (the eigenvector correspond-

ing to the worst load direction) of the reverse L example

Figure 14: Optimal configurations of the reverse L example obtained by solving the double

loop optimization problem

43



(a) For horizontal load (b) For vertical load

Figure 15: Optimal configuration of the reverse L example obtained by the conventional

deterministic approach.
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Figure 16: A bridge design domain

Figure 17: Optimal configurations of the bridge example
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Figure 18: The convergence history of the eigenvalues of the bridge example
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(a) Initial configuration
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(b) Optimal configuration

Figure 19: Illustrations of the worst load distributions of the bridge example
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(a) Optimal configuration

x

Fy

(b) The worst load distribution

Figure 20: Optimal configuration and the worst load distribution with a coarser mesh for

the bridge example

(a) For a vertical point load at the

bottom center

(b) For a vertical uniform dis-

tributed load on the bottom side

Figure 21: Optimal configurations of the bridge example obtained by the conventional

deterministic approach
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(a) The worst load distribution of Fig.21(a)
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(b) The worst load distribution of Fig.21(b)

Figure 22: The worst load distributions for optimal configurations obtained by the deter-

ministic approach
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Figure 23: A 3D design domain
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(b) Isometric view from another view-

point

Figure 24: Isosurface plots of the optimal configuration for the 3D example

(a) y = 0 (b) y = 0.3 (c) y = 0.6

Figure 25: Cross-section density distribution of optimal configurations of the 3D example

on xz planes
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Figure 26: The convergence history of the eigenvalues of the 3D example
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(b) Plot of the set of Ul of the initial

configuration
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(c) Plot of the set of Ul of the optimal

configuration

Figure 27: Illustration of mapping from Fl to Ul using the matrix C of the 3D example
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Figure 28: A 3D design domain under distributed load
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Figure 29: Isosurface plots of the optimal configuration for the 3D distributed load example
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Figure 30: The convergence history of the eigenvalues of the 3D distributed load example
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Figure 31: Illustrations of the worst load distributions of the 3D distributed load example
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