数学的理解の超越的再帰理論に関する一考察

アクセス数 : 1420
ダウンロード数 : 545

今月のアクセス数 : 4
今月のダウンロード数 : 6
ファイル情報(添付)
タイトル ( jpn )
数学的理解の超越的再帰理論に関する一考察
タイトル ( eng )
On Transcendent Recursive Theory of Understanding Mathematics
作成者
収録物名
広島大学教育学部紀要. 第二部
Bulletin of the Faculty of Education, Hiroshima University. Part 2
43
開始ページ 63
終了ページ 72
抄録
There has been much interest in mathematical understanding and a variety of approaches to study of it in the area of research on mathematics education. The aim of this paper is to study the transcendent recursive theory of understanding mathematics which has been developed and elaborated by S. Pirie and T. Kieren in their work over the past six years.

The theory and its model are examined thoroughly from view points of its foundamental ideas, features and usefulness as a theory of understanding mathematics in order to answer the following questions.

1) Why does this theory regard the growth of child' s understanding mathematics as a whole, dynamic, levelled but non-linear, transcendently recursive process?

2) What are features of this theory? In particular, what are properties of eight potential levels or distinct modes as basic elements of this theory?
NDC分類
教育 [ 370 ]
言語
日本語
資源タイプ 紀要論文
出版者
広島大学教育学部
発行日 1995-03-10
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0440-8713
[NCID] AN0021336X