Counting the number of bounded domains separated by hyperplanes

Hiroshima journal of mathematics education 7 巻 55-62 頁 1999-03 発行
アクセス数 : 861
ダウンロード数 : 93

今月のアクセス数 : 5
今月のダウンロード数 : 2
ファイル情報(添付)
HiroshimaJMathEduc_7_55.pdf 441 KB 種類 : 全文
タイトル ( eng )
Counting the number of bounded domains separated by hyperplanes
作成者
収録物名
Hiroshima journal of mathematics education
7
開始ページ 55
終了ページ 62
抄録
When some hyperplanes H_1, ..., H_m of the n-dimensional Euclidean space R^n are given in general position, Schläfli has determined the number of the bounded connected components in R^n - ∪^m_i = _1H_i, the complementary set of the union of the hyperplanes. It is equal to the binomial coefficient ((m-1)/n), which is also equal to the number of vertices which are the intersections of n hyperplanes in H_1, ..., H_<m-1>. Although Schläfli's proof is implicit and intuitive, the fact reflects an interesting aspect concerning configurations of hyperplanes. We clarify how the condition of general position works, and re-prove the fact in all of its details.
NDC分類
教育 [ 370 ]
言語
英語
資源タイプ 紀要論文
出版者
Department of Mathematics Education, Faculty of Education, Hiroshima University
発行日 1999-03
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0919-1720
[NCID] AN10444573