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Abstract

When some hyperplanes Hj, ..., H,, of the n-dimensional Euclidean
space R" are given in general position, Schlafli has determined the num-
ber of the bounded connected components in R”— U7% H;, the com-
plementary set of the union of the hyperplanes. It is equal to the bino-
mial coefficient (m; 1> , which is also equal to the number of ver-
tices which are the intersections of n hyperplanes in Hy, ..., Hp—j.
Although SchEfli’s proof is implicit and intuitive, the fact reflects an in-
teresting aspect concerning configurations of hyperplanes. We clarify
how the condition of general position works, and re-prove the fact in all

of its details.

INTRODUCTION

Assume that several numbers of lines, each triad of which surrounds a triangle and
just two of which meet at each intersection, are given in the plane. Then, choose one
line I among them arbitrarily, and count all intersections which are not on L Then, we
see that the number of such intersections is equal to the number of the bounded
domains which are formed by removing all given lines from the plane. Generalizing

this fact to higher dimensions, Schlafli [Sc] has shown the following:

Theorem A. If the hyperplanes Hy, ..., H,, of R" are in general position, then the number
of bounded domains of R" — Uj= 1 H; is equal to (m; 1> )

The purpose of this paper is to clarify how the condition of general position works
and to give a detailed proof of Theorem A. The proof in [Sc] is implicit and intuitive

in a sense, and how the condition of general position works is not necessarily clear at
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least in the case of #=>3. On the other hand, the result is interesting. (m; 1) is
the number of vertices, the intersections of » hyperplanes in Hy, ... ,H,—1, and
Theorem A means that the number of the bounded domains of R”— U7=1H; is equal
to the number of such vertices. Also, Theorem A relates the configuration of hyper-
planes to combinatrics (cf. [Po], [Co], [Gr], [Im]), and it has several applications (e.g.
[AK]). Therefore, the theorem deserves to be shown in all of its details with clarifying
the point where the condition of general position works.

The notations and the terminologies related to the theorem are explained as follows:
(A1) R" denotes the n-dimensional Euclidean space {x= (21, ..., %) | x;is a real
number for 1 << 1<< n}. A subset XCR" is said to be bounded if X is included in an
n-dimensional disec {x€ER"] | x—0 || < r} with some radius » > 0, where 0 is the
origin of R™ If X is not bounded, we call X unbounded. For given bounded sets, a finite
union of them and subsets of them are all bounded. We denote the empty set by ¢,
which is also bounded, and we say X is nonempty if X+ ¢.

(A2) A hyperplane Hof R"is a set H={xER"|a-x= b} for somea€R" —{0} and a
real number b. Here, a denotes a normal vector of H, and a-x the inner product of a and x.
a-x > b
and H = x€R"|a-x < b} are the open half spaces separated by H. The space

A hyperplane Hof R" is an (n—1)-dimensional affin space, and H T={x€ER"

R"— U1 H; is the disjoint union of connected components each of which is the in-
tersection of half spaces separated by the hyperplanes Hi, ... ,H,. If a connected com-
ponent of R”— U= 1 H; is nonempty and bounded, then we call it a bounded domain.
(A3) Hyperplanes Hi, ... ,H,, of R" are said to be in general position if they satisfy the
following (a) or (b):

(a) m=<mn, and Ni=1 H; is an (n — m)-dimensional affin space;

(b) m=n+ 1, and ﬂ?:% Hi].=¢ for any 1 << i3 < *** < 41 =< m, and Ny Hy; s

a one point set for each 1 < ;< = < in < m.
(A4) <m; 1> denotes the binomial coefficient whose value is

(m—1)! /@! (m—n— 1)) =T i/ }=qj.

The paper is organized as follows: In the next section, we prepare the fundamental
proposition (Proposition B), and prove Theorem A by assuming it.The third section is
devoted to prove Proposition B. In the process, we prepare Proposition C further to
clarify the steps of the proof, and also we give Lemmas 1 — 3 which explain how the

condition of general position is used.
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COUNTING

We denote by B (m, n) for m =1 and n =1 the number of the bounded domains of
R"—U"=1 H, for m distinct hyperplanes Hi, ... ,H,, of R" which are in general posi-
tion. Furthermore, set B(m,0) = 1 and B(0,n) = 0 for any m, n=1 and B (0, 0)=0.

Then, we have the following:

Proposition B. Let m >1 and n=>1. Then,
i) Bm 1)=m—1;
(i) BG,n)=0 for l<i<n:
(i) B(n+1m) =1;

(iv) B(m,n) =B(m—1,n)+ B(m—1, n—1 ).

We prove the proposition in the next section, and prove Theorem A first.

Proof of Theorem A. Set D (k, n) = B (k+ n,n) for =0 and n=>0,and D(k n) = 0
for < 0 or n < 0. Then, we can consider the generating function of {D (&, n)} as
follows:

D (kn)" € ZI*]l for k=>1.
0

grlx) =

M8

Hence, g1(x) = Ef;o " =1/(1—x)by Proposition B(iii). For k=2, by applying

Proposition B(iv), we have

o0

(D(k—1,n)+ D(kn—1)s"
0

&r(%)

n

D=1, n)x"+ > D(kn—1)x"
0 n=0

gr—1(x) T xg,(x).
Thus, g (x) = (1= %) 'g—1(x) = (1 — 2)' *g(x) = 1 —x) ~*

=3, <n+i~1> .

for any k=1. Therefore, we have D (k, n) = <” +1f o 1), which gi‘}es the required

I
Ms

n

equality B (m, n) = D (m — n, n) = <m; 1). ]

Instead of the generating function gy(x) in the above proof, we can also consider

the following generating function of {D (k, %)} :
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(%) = 3} D (km) L,

Then, hi(x) =2 f:lkxk_l by Proposition B(i). Proceeding just the same way as above
and applying Proposition B(ii)(iv), we get the equality
A ntk—2—1
D (k.n)= f=“< E—i >

Hence, we have the following collorary as a by-product.

Collorary. <m; 1) 2:”2_141 <Z: i: z >

wheve we vegard <(l)> =1foramyl €EZ

MAIN STEPS

When m distinct hyperplanes H; (1 < i =< m) of R” are given, we will denote the
hyperplanes by
H={xeR" |lajf.x=10;| for 1=<i<m.
Here, a; € R” — {0} is the normal vector of H; and b; is a real number. Let e; denote
the sign + or — . Then, the open half space H;* separated by H; is given as
Hf ={x €R" | €2 X > €ibif .

First, we show the following lemma which yields Proposition B(i).

Lemma 1. Assume that the hyperplanes Hy, ... ,H,, are in geneval position.
() If m < m, then N2 1 H;' is either empty or unbounded for any e;. Furthermore, if
2 L HE is nonempty, it contains a line.

(i) If m = n, then N =1 H;' is nonempty and unbounded for any e ;.

Proof. Concerning (i), we assume that K =/Z1 H;' has an element yo. Then, the orthogonal
complement in R” of the vector space generated by the normal vectors {aj,...,a,,] hasan
element v # 0 because rank(ay,...,a,,) = m < n, and the line | ={yg +tv[t ER} isa
subset of K since e;a;. (yo + tv) >e;b; for 1 << i< m. The line ! is unbounded, and
thus K is unbounded, which establishes (i). Under the assumption of (ii), N i=1H;
is a one point set {xp}, and, for any e, there is a unique z ¥ 0 with a;. z=¢;1 for
1 < i< n. Then, the half line I+={xo+tzlt >0} is a subset of N{=1Hf, because
e;a; (xo+ t2) = e by + t > €; by for 1 <1i=< n. Therefore, Ni=1H is nonempty
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and unbounded, as required. [

Let {V;11< 1< hl be the set of connected components of R"— UZH IV, N H,=9,
then V,—H,=V; obviously. Remark that R"— U H;= (R"—U " H) — B, =Ul, (V,— H,).
fV,NH,+¢,then V,— H,= W1 U W5 for some nonempty connected open sets
Wi1 and W2 with W;1 N W;5 = ¢. Under these notations, we have the following

proposition which is the key to prove Proposition B.

Proposition C. Assume that Hy,...,H,, are in general position and satisfy Vi H,, + ¢
for some 1 << 1< h.
(i) The necessary and sufficient condition for Vi to be bounded is that V; N H,, W;;
and Wio are all bounded.
(i) If V, is unbounded and V,N\ H,, is bounded, then one of W1 and W,o is bounded
and another is unbounded.
(iii) If both V; and V; " H,, ave unbounded, then both W1 and W2 are unbounded.

The proofs of (i) and (iii) are easy. But, in order to make the steps clear, we first

complete the proof of Proposition B by assuming Proposition C.

Proof of Proposition B. (i) is clear since m hyperplanes are m points of Rl, and all (ii)
— (iv) hold for n = 1. (ii) follows from Lemma 1.

We apply the double induction on # =1 and m =1 for the proof of (iii) and (iv),
and prove them simultaneously. As for the first steps of the induction, we can use (i) and
(ii). Then, we have to prove (iii) and (iv) for given #=>2 and m=>n-+1 by assuming that
(iii) holds for any 1< »n’<n and (iv) holds for any (»’, m’) with 1< n’<# and m’ =1
and for any (n, m’) with 1< m’'< m .

Set K; = H; N Hy, for 1 <i<m — 1. Then, identifying H,, with R"_l, we can re-
gard {K;] 1<<i<m — 1} as hyperplanes of H,, Remark that Ki,... ,Km—1 are in
general position. Thus, by the inductive hypothesis, the number of the bounded
domains of H,, — Uﬁ"’:_llKi is equal to B(m—1, n— 1), and also the number of the
bounded domains of R"— U?;llHi is equal to B(m — 1,n).

We have set R"— U?leHi = Uzh=1 V, for the connected components {V;}, and thus
B(m — 1, n) is equal to the number of V; which are bounded. Let ¢ be the number of
Vi for which V; N H,, is nonempty and bounded. Then, by Proposition C, we have
B(m, n) = B(m—1, n) + c. However, since H,, — N 71K, = H,, N (R" —U lH)

=ULiH, N Vi, we have ¢ = B(m — 1, n — 1). Hence, we obtain the required
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equality B(m, n) = B(m — 1, n) + B(m — 1, n — 1) of (iv), which also give (iii) by
taking m = » + 1 and using (ii) and the inductive hypothesis. ]

Before the proof of Proposition C, we prepare two lemmas. In the first lemma,
we assume that the hyperplanes Hi,... ,Hu+1 of R” are in general position, and set
K=H; N Hyt1 for 1 <i<n and {f,41}=N7=1H, Also, we denote by f+1* X the open
join which is the union of all open line segments connecting f,+1 and points of X, where an
open line segment ! connecting points a and b means I={x=(1—¢)a+tbER"|0 << 1}
Lemma 2. When Hy,... .Hu+1 ave in general position and N :L:
NP HE = £, kN 1y KF, where K§ =HF N Hyyr fr 1<i<mun .

L HE is nonempty, we have

Proof. Set N1<i+j<u+1 H=1f} for L<j<mn+1. Then, {f;l1 <j<n-+1lis
affinary independent. In fact, if = Z}#;f; = 0 for some real numbers 7; with =7 Ilr=0,
then 0=2 7; :%7]- apf,=ndpt21<j+r<n+ 1= 7,(dp— by,) for some djp with dp, = by,
and thus 7,=0. Therefore, {f;| 1 < j=<n + 1} is the set of vertices of an #-dimensional
simplex A, and {AN H;l 1 <i<<n + 1} is the set of the (n— 1)-dimensional faces
of A . If we take ¢; to satisfy HfiD Int(A), where Int(A) is the set of the interior
points of the simplex A, then it holds N7 illei = Int(A) . Just the same way, if X is
the (n— 1)-dimensional simplex with vertices {f;|1 <i<mn b, then Int(A) = N7 k¥

Since Int(A) = f,,1 * Int(4A), we have the required result. []

Lemma 3. Assume that the hyperplanes Hy,... ,Hy of R” ave in general position and Nk Hf
is nonempty and bounded. Then, k=n + 1, and we can choose some 1 < 17 <-+< in+1 =<k

for which N'7Z1Hi? is nonempty and bounded.

Proof. k=n-+ 1 follows from Lemma 1. For simplicity, we put A= f:lei, which is
nonempty and bounded by hypothesis. We prove the assertion by the double induec-
tionon #n>>1 and k=un + 1. In the case of n=1, it is clearly true for any k= 2.
Also, in the case of =+ 1, the assertion is true trivially. Thus, for given n=>2
and #>n + 2, we assume that the assertion holds for any (», ¥) with 1 << »’<#% and
k’>1 and for any (n,k’) with 1 << B’<<k, and prove it in the case of (n ,k).

Put V=N IHS 1f VN H, = ¢, then V=N/-1HF =A and thus we have the
conclusion by the inductive hypothesis. Hence, we assume that V N H, + ¢. Remark
that the hyperplanes K; = H; N Hyof Hyfor 1 < i<k — 1 are in general position,
and N f_—fllef = VN H,# ¢, where K= H{N H, Then, by the inductive hypothe-
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sis, we can choose some 1 < my <-<m, =< k—1 for which W= N7=1K,"is
nonempty and bounded.

Let {f} =ﬂ?:1Hmj. If f € HE* then by Lemma 2 we have ﬂ?:lH,,f{]’.‘iﬂ Hf=1fxW.
But, f* W is bounded since W is bounded, and thus we have the required result in this
case. If £ € H; ¥, then similarly f* W=N"%=; H;»N H;* and thus L=N klHE N H e
is bounded. Then, A U L =N f;ll Hf'is nonempty and bounded. Hence, by the
inductive hypothesis, we can choose some 1 << i3 <:*< 4,41 <k — 1 for which

N ?: fH,;;if is nonempty and bounded. Thus, we have the required result. []
Now, we can complete the proof of Proposition C.

Proof of Proposition C. Since any subset of a bounded set and any finite union of bounded
sets are bounded, (i) holds. Let X denote the closure of a set X with respect to the ordin-
ary topology of R™ Then, X is bounded if and only if X is bounded. Concerning (iii), since
we have W;; DOV, N H,, and V; N H,, is unbounded by the assumption, W;; is unbounded
for 4 = 1,2, which is the required result. Thus, only the proof of (ii) remains. By (i), either
W1 or W2 is unbounded. We can represent V;as V; = N7 HE for some e; Then, V;
N H,=NT1 K5 where Kff = Hf N H, for 1 <i=<m — 1. Then, applying Lem-
ma 3 to the hyperplanes K;* of H,, we can choose some 1 < 43 <--< 4, <m— 1 for
which N ?lef]?f is nonempty and bounded. Let {f} =N ?=1Ki§.if. Then, by Lemma 2,
we have MNj=; H,j."f N Hir=1% ﬂf;lKijif, which is bounded and includes one of W;;
and W2 as a subset. Thus, W;; or W2 is bounded, and we have completed the
proof. [
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