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Abstract

When some hyperplanes Hi,... , Hmof the n-dimensional Euclidean

space Rn are given in general position, Schlafli has determined the num-

ber of the bounded connected components in Rw- UT=iHi, the com-

plementary set of the union of the hyperplanes. It is equal to the bino-
mial coefficient (^w~ J ,which is alsoequaltothe numberofver-

tices which are the intersections of nhyperplanes in Hi,... , Hm-i.

Although Sch&fli's proof is implicit and intuitive, the fact reflects an in-

teresting aspect concerning configurations of hyperplanes. We clarify

how the condition of general position works, and re-prove the fact in all

of its details.

INTRO DUCTI ON

Assume that several numbers of lines, each triad of which surrounds a triangle and

just two of which meet at each intersection, are given in the plane. Then, choose one

line I among them arbitrarily, and count all intersections which are not on /. Then, we

seethatthe number of such intersections is equal to the number of the bounded

domains which are formed by removing all given lines from the plane. Generalizing

this fact to higher dimensions, Schlafli [Sc] has shown the following:

Theorem A. // the hyperplanes H±,... , Hmof Un are in general position, then the number
of bounded domains o/Rá"-UfLify is equal to (m~^^).

The purpose of this paper is to clarify how the condition of general position works

and to give a detailed proof of Theorem A. The proof in [Sc] is implicit and intuitive

in a sense, and how the condition of general position works is not necessarily clear at
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fm-i\ .leastinthecaseofn>3.Ontheotherhand,the resultisinteresting. ^ n J is

the number of vertices, the intersections of nhyperplanes in Hi,... ,Hm-i, and

Theorem A means that the number of the bounded domains of R"- U?=i#j is equal

to the number of such vertices. Also, Theorem A relates the configuration of hyper-

planes to combinatrics (cf. [Po], [Co], [Gr], [Im]), and it has several applications (e.g.

[AK]). Therefore, the theorem deserves to be shown in all of its details with clarifying

the point where the condition of general position works.

The notations and the terminologies related to the theorem are explained as follows:

(Al) RMdenotes the n-dimensional Euclidean space |x= (*i,..., xn)\ x{is a real

number for 1< 1< n\. AsubsetXCR*issaidtobeboundedifXisincludedin an

n-dimensional disc |xGRw| || x-0 || < r( withsome radius r> 0,where0isthe

origin of R" If Xis not bounded, we call Xunbounded. For given bounded sets, a finite

union of them and subsets of them are all bounded. We denote the empty setby 4>,

which is also bounded, and we say Xis nonempty if X=hi>.

(A2) A hyperplaneHofRnisasetH=|xGRM|a-x= b\ forsomea£R"-|0[ anda

real number b. Here, a denotes a normal vector of H, and a«x the inner product of a and x.

A hyperplane HotR"is an (n-l)-dimensional affin space, and H = I XGR"|a«x > b [

andH~= jxGR"Ia-x< b i aretheopenhalfspacesseparatedbyH.Thespace

RM-\Jf=iHi is the disjoint union of connected components each of which is the in-

tersection of half spaces separated by the hyperplanes Hx,... ,Hm.If a connected com-

ponent of Rn- \Ji=\Hi is nonempty and bounded, then we call it a bounded domain.

(A3) Hyperplanes Hi,... ,Hmof R" are said to be in general position if they satisfy the

following (a) or (b):

(a) m<n, and Cl fLiHi is an {n - m)-dimensional affin space;

(b) m>n+1,and r)1}±{Hij=4> forany l<ii< •E•E•E< in+i<m,and f}f=1Hijis

aonepointsetforeach 1< ii< •E•E•E< in<m.

(A4) (WT^ ) denotes the binomial coefficient whose value is

\ n /
(»-1)! /(n! (w-n- 1)! ) =IIT=m-ni/E?=ij-

The paper is organized as follows: In the next section, we prepare the fundamental

proposition (Proposition B), and prove Theorem A by assuming it.The third section is

devoted to prove Proposition B. In the process, we prepare Proposition C further to

clarify the steps of the proof, and also we give Lemmas 1 -3 which explain how the

condition of general position is used.
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COUNTING

We denote by B(m, n) for w>l and n>l the number of the bounded domains of

RM-\jr=iHi for m distinct hyperplanes Hlt... ,Hmof RMwhich are in general posi-

tion. Furthermore, setB{m,0)= 1 and B(0,n) = 0 for any m, n>\ and B(0, 0)=0.

Then, we have the following:

Proposition B. Let m>1 and n>l. Then,

(i) B(m,l)=w-l;

(ii) S(in)=0/or1<i<n;

(iii) B(«+l,n) =1;

(iv) B(m,n)=B(m-l,n)+B(m-1,n~l).

We prove the proposition in the next section, and prove Theorem A first.

ProofofTheoremA. SetD(k, n)=B(k+n,n) for k>0 and n>0, andD(k, n) = 0

for fe< 0 or n< 0. Then,wecanconsiderthegeneratingfunction of jD(k, n)\ as

follows:
CO

ft(*)= 2 D(k,n)xnGZ[[x]} fork>l

Hence, ^(x) = 2^=o *M= 1/(1 -a;) by Proposition B(iii). For k>2, by applying

Proposition B(iv), we have

oo
gk(x)=2 (D(k-l,n)+D(k,n-l))xn

n=0

oo

)x"=2 D(k-1,n)xn+§ D(k,n-1):
«=U M=0

=gk-i(x) + xgk{x).
-

1Thus,gk(x)=(1-*) 1gk-1{x)=(1 -s)1"*^*)=(1-x)~k

-Z«=o\ n Jx

for any £>1. Therefore, we have D(k, n) = (j1+ *~ ^, which gives the required

equalityB(m,n)=D(m-n,n)= (m~~^. D

Instead of the generating function gk(x) in the above proof, we can also consider

the following generating function of |D (k, n) \ :
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M*) = !) D(k,n)xk~\

k=i

Then, hi(x) = S^Lxfe^"1 by Proposition B(i). Proceeding just the same way as above

and applying Proposition B(ii)(iv), we get the equality

D (k,n)=2)^=1i fn+k-2-iV k
-i

)•E

Hence, we have the following collorary as a by-product.
m-n , ___ O .

m
t I

i=1
Collorary. (*n 0 = 2/ (»-

whereweregard (n) = 1/oranyI G%å 

MAIN STEPS

When mdistincthyperplanes Hi{l < i< m) ofRMare given, we will denote the

hyperplanes by
Hi=|xGRn |a{.x=bi\ for 1<i<m.

Here, a;e R*- |0[ is the normal vector of Hiand biis a real number. Let e;denote

the sign+or-. Then, the open half space Hf separated by Hi is given as
Hf=jxgRM| e,VX>6tM.

First, we show the following lemma which yields Proposition B(i).

Lemma1. Assume that the hyperplanes H\,... ,Hmare in general position.

(i) Ifm K n, then DiLiHf' is either empty or unbounded for any e;. Furthermore, if

DiLiHi' is nonempty, it contains a line.

(ii) Ifm = n, then C\?=i-Hf' is nonempty and unbounded for any e».

Proof. Concerning (i), we assume that K = C\^\Hf has an element yo- Then, the orthogonal

complement in R" of the vector space generated by the normal vectors Ui am| has an

elementv+0becauserank(ai,...,am)= m< n,andtheline I=lyo +tvItGR( isa

subsetofKsince e^a;. (yo+ tv) >eibifor 1<i< m. Theline /isunbounded, and

thus K is unbounded, which establishes (i). Under the assumption of (ii), Pi?=i^i

is aone pointset |xol, and, for any e;,there is a uniquez=#0with a;-z-eil for

1<i< n. Then,thehalfline /+=|xo+te|t >0[ is asubsetof n?=iHii, because

eia;. (x0+ tz)= eibi+ t>eibi for 1<i<«.Therefore, n?=i#fisnonempty
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and unbounded, as required. å¡

Let {V; 1 1 < I< h\ be the set of connected components ofRM-Uw^tf;. If V, Pi Hm=<f,

then V-RnT Vt obviously. Remark that Rn-U?=1Hi= (RM-Ut111^) -i4=U^i (Vt- HJ.

If Vi Pi Hm =t= <f> , then Vt- Hm=Wtl U Wl2 for some nonempty connected open sets

Wu and Wu2 with Wa ft Wl2 = 0. Under these notations, we have the following

proposition which is the key to prove Proposition B.

Proposition C. Assume that Hi,...,Hm are in general position and satisfy Vt C\ Hm + f5

forsome 1< l<h.

(i) The necessary and sufficient condition for Vt to be bounded is that Vt D Hm, WL1

and Wu2 are all bounded.

(ii) // Vi is unbounded and 7Zfl Hmis bounded, then one of W4i and Wu2 is bounded

and another is unbounded.

(iii) //both Vi and Vt D Hm are unbounded, then both Wu and W[y2 are unbounded.

The proofs of (i) and (iii) are easy. But, in order to make the steps clear, we first

complete the proof of Proposition B by assuming Proposition C.

ProofofProposition B. (i) is clear since m hyperplanes are m points of R1, and all (ii)

-(iv) hold for n = 1. (ii) follows from Lemma 1.

We apply the double induction on «>l and m>1 for the proof of(iii) and (iv),

and prove them simultaneously. As for the first steps of the induction, we can use (i) and

(ii). Then, we have to prove (iii) and (iv) for given w>2 and m>n+ 1 by assuming that

(iii)holds for any 1<w'<wand (iv) holds for any(n', m') with 1<w'<nand m'>l

andforany(n, m')with 1<m'< m.

SetKi= Hi fl Hm for 1< i< m - 1. Then, identifying HmwithRn~x, we can re-

gard \Ki\ l<t<m - l[ ashyperplanesofHm.RemarkthatKlt... ,Km-\ arein

general position. Thus, by the inductive hypothesis, the number of the bounded

domainsofHm -(JiL^i^isequal toB(m-1, n-1), and alsothenumberofthe

bounded domains of R"-UT=i Hi is equal to B(m - \,n).

We have set R"-UT=i Hi = U/LxVt for the connected components {Vt \ , and thus

B(m- 1, n) is equal to the number of Viwhich are bounded. Let cbe the number of

Vifor which Vt C\ Hmis nonempty and bounded. Then, by Proposition C, we have

B(m,n)=B(m-1, n) + c. However, since Hm-C\T=i Ki= HmD (Rn-U T=i Ht)

=U i=\Hmfl Vt,wehavec-B(m- 1,n- 1).Hence,weobtaintherequired
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equalityB(m,n)=B(m- 1,n)+B(m- 1,n - 1)of(iv),whichalsogive(iii)by

taking m = n + 1 and using (ii) and the inductive hypothesis. å¡

Before the proof of Proposition C, we prepare two lemmas. In the first lemma,

we assume that the hyperplanes Hi,... ,Hn+i of RM are in general position, and set

Ki=Hin.Hn+1 for 1 < i< n and lfM+1(=fl"=1^. Also, we denote by fM+i*Zthe open

join which is the union of all open line segments connecting f«+i and points of X, where an

open line segment I connecting points a and b means Z=|x= (1- t) a+ tb^Rn\0 < t< l\.

Lemma2. When Hi,... ,Hn+i are in general position and D "=1 Hf is nonempty, we have

fl7=i Hf= fn+1*flf=iKf, whereK?=HfDHn+x for l< i< n.

Proof. Set ni<i#=/<n+ii£={f/l forl<j<n+1.Then, |fy|l<j<n+l\ is

affinary independent. In fact, if 2 " =\rjf} = 0 for some real numbers r;-with 2 " iiry=0,

then 0='2 1} tirj &k-fj=.rkdk+2i<}-± k<n+ ir}bk-= rk(dk- bk) for some dk with dk=h bk,

and thus rk-Q. Therefore, |fyl 1 <j< n + l( is the set of vertices of an n-dimensional

simplex A, and |Afl Ht\ 1<i< n + 1[ isthe setofthe(«-l)-dimensional faces

of A. If we take ejto satisfy H**^ Int(A), where Int(A) is the set of the interior

points of the simplex A , then it holds D"=iHt= Int(A). Just the same way, if Ais

the (n- l)-dimensional simplex with vertices {fyl 1 < i < n \ , then Int(A') = fl^Li-fiTf.

Since Int(A) = f»+i* Int(A'), we have the required result. D

Lemma3. Assume that the hyperplanes Hi,... ,Hk of Rn are in general position and (li^iHf1

is nonempty and bounded. Then, k >m + 1, and we can choose some 1 < ti<-"< in+i < k

for which H nj=\Hip is nonempty and bounded.

Proof. k>n+ 1 follows from Lemma 1. For simplicity, we put A= rii=ilff, which is

nonempty and bounded by hypothesis. We prove the assertion by the double induc-

tiononw>1 and k>n+ 1.Inthecaseofn=1,itisclearlytrueforany fe>2.

Also, in the case of k=n+1, the assertion is true trivially. Thus, for given n>2

and k>n+ 2, we assume thatthe assertion holds for any (ri, k') with 1< n'<n and

k'>l and for any (n,k') with 1< k'Kk, and prove itin the case of{n,k).
Put V=fl\Z\Hf\ U VC\ Hk = <t>,then V=DiL^f=Aandthuswehavethe

conclusion by the inductive hypothesis. Hence, we assume that V D H^ 4= 4>. Remark

thatthe hyperplanes Ki = Hi C\ HkofHkfor 1 < t<k- 1 are in general position,
and 0 \Z\Kf= V D Hk =h i> , where iiTf= Hffl/^ Then, by the inductive hypothe-



              The Number of Bounded Domains             61

sis,wecanchoosesome 1 <m1<•E•E•E< mn<fe-1 forwhich W-C\y=ii^*yis

nonempty and bounded.

 Let |f(=D"=iHmj. IffG H§k, then by Lemma 2 we have D"=iH%*D Ef=f*W.

But, f*Wis bounded since Wis bounded, and thus we have the required result in this
case. IffGHke\ then similarly f-kW=n^lH^DH'kek and thus L=Ht!#f HH~
kek
is bounded. Then,.A U L =Pi f=i" Hf1is nonempty and bounded. Hence, by the

inductive hypothesis, we can choose some 1< i\<•E•E•E< i»+i< fe- 1 for which

D f=iHfli is nonempty and bounded. Thus, we have the required result. å¡

 Now, we can complete the proof of Proposition C.

ProofofProposition C. Since any subset of a bounded set and any finite union of bounded

sets are bounded, (i) holds. Let~Xdenote the closure of a set Xwith respect to the ordin-

ary topology of RM. Then, Xis bounded if and only if Xis bounded. Concerning (iii), since

we have WWD V; flHm and Vt DHm is unbounded by the assumption, WUi is unbounded

for i = 1,2, which is the required result. Thus, only the proof of (ii) remains. By (i), either

Wa or Wk2 is unbounded. We can represent Vt as Vt =ná"=x Ht for some e». Then, Vi

D #m=nf^Zf,where K?= H? 0 Hm for 1<i< m - 1. Then, applyingLem-

ma 3 to the hyperplanes if/'of #m, we can choose some 1 < tx<-**< in< m- 1 for

which 0y=ii^is nonempty and bounded. Let |f[ =DJ=xK,f. Then, by Lemma 2,

we have Dy=i i^» fl i?^m=i*C\jLxKi>i, which is bounded and includes one of Wu

and W^2 as asubset. Thus, Wij or WU2 isbounded, andwehave completedthe

proof. D
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