Evolving FPS Game Players by Using Continuous EDA-RL
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
Page 143-146
published_at 2009-11
アクセス数 : 816 件
ダウンロード数 : 130 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 2 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00028463
File | |
Title ( eng ) |
Evolving FPS Game Players by Using Continuous EDA-RL
|
Creator |
Tsubota Hajime
Handa Hisashi
|
Source Title |
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
|
Start Page | 143 |
End Page | 146 |
Abstract |
This paper extends EDA-RL, Estimation of Distribution Algorithms for Reinforcement Learning Problems, to continuous domain. The extended EDA-RL is used to constitiute FPS game players. In order to cope with continuous input-output relations, Gaussian Network is employed as in EBNA. Simulation results on Unreal Tournament 2004, one of major FPS games, confirm the effectiveness of the proposed method.
|
NDC |
Technology. Engineering [ 500 ]
|
Language |
eng
|
Resource Type | conference paper |
Publisher |
IEEE SMC Hiroshima Chapter
|
Date of Issued | 2009-11 |
Rights |
(c) Copyright by IEEE SMC Hiroshima Chapter.
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/
|