An Evolutionary Multi-Objective Optimization-Based Constructive Method for Learning Classifier Systems Adjusting to Non-Markov Environments

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 132-136 頁 2009-11 発行
アクセス数 : 781
ダウンロード数 : 107

今月のアクセス数 : 1
今月のダウンロード数 : 0
ファイル情報(添付)
A1209.pdf 827 KB 種類 : 全文
タイトル ( eng )
An Evolutionary Multi-Objective Optimization-Based Constructive Method for Learning Classifier Systems Adjusting to Non-Markov Environments
作成者
Moriwake Keita
Nishizaki Ichiro
Hayashida Tomohiro
収録物名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ 132
終了ページ 136
抄録
Learning Classifier Systems (LCSs) are rule-based systems that automatically build their rule set so as to get optimal policies through evolutionary processes. This paper considers an evolutionary multi-objective optimization-based constructive method for LCSs that adjust to non-Markov environments. Our goal is to construct a XCSMH (eXtended Classifier System - Memory Hierarchic) that can obtain not only optimal policies but also highly generalized rule sets. Results of numerical experiments show that the proposed method is superior to an existing method with respect to the generality of the obtained rule sets.
NDC分類
技術・工学 [ 500 ]
言語
英語
資源タイプ 会議発表論文
出版者
IEEE SMC Hiroshima Chapter
発行日 2009-11
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/