Self-Organized Similarity based Kernel Fuzzy Clustering Model and Its Applications

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 127-131 頁 2009-11 発行
アクセス数 : 591
ダウンロード数 : 70

今月のアクセス数 : 3
今月のダウンロード数 : 1
ファイル情報(添付)
B1109.pdf 305 KB 種類 : 全文
タイトル ( eng )
Self-Organized Similarity based Kernel Fuzzy Clustering Model and Its Applications
作成者
Kuwata Tomoyuki
Sato-Ilic Mika
収録物名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ 127
終了ページ 131
抄録
The purpose of this paper is to improve the performance of the kernel fuzzy clustering model by introducing a self-organized algorithm. A conventional kernel fuzzy clustering model is defined as a model which is an improved additive fuzzy clustering. The purpose of this conventional model is to obtain a clearer result by consideration of the interaction of clusters. This paper proposes a fuzzy clustering model based on the idea of self-organized dissimilarity between two objects.
NDC分類
技術・工学 [ 500 ]
言語
英語
資源タイプ 会議発表論文
出版者
IEEE SMC Hiroshima Chapter
発行日 2009-11
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/