Feature Selection in Large Scale Data Stream for Credit Card Fraud Detection

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 202-207 頁 2009-11 発行
アクセス数 : 607
ダウンロード数 : 83

今月のアクセス数 : 1
今月のダウンロード数 : 0
ファイル情報(添付)
B1004.pdf 259 KB 種類 : 全文
タイトル ( eng )
Feature Selection in Large Scale Data Stream for Credit Card Fraud Detection
作成者
Ise Masayuki
Niimi Ayahiko
Konishi Osamu
収録物名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ 202
終了ページ 207
抄録
There is increased interest in accurate model acquisition from large scale data streams. In this paper, because we have focused attention on time-oriented variation, we propose a method contracting time-series data for data stream. Additionally, our proposal method employs the combination of plural simple contraction method and original features. In this experiment, we treat a real data stream in credit card transactions because it is large scale and difficult to classify. This experiment yields that this proposal method improves classification performance according to training data. However, this proposal method needs more generality. Hence, we'll improve generality with employing the suitable combination of a contraction method and a feature for the feature in our proposal method.
NDC分類
技術・工学 [ 500 ]
言語
英語
資源タイプ 会議発表論文
出版者
IEEE SMC Hiroshima Chapter
発行日 2009-11
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/