Applying Cluster Ensemble to Adaptive Tree Structured Clustering

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 186-191 頁 2009-11 発行
アクセス数 : 564
ダウンロード数 : 84

今月のアクセス数 : 3
今月のダウンロード数 : 0
ファイル情報(添付)
B1001.pdf 308 KB 種類 : 全文
タイトル ( eng )
Applying Cluster Ensemble to Adaptive Tree Structured Clustering
作成者
Yamaguchi Takashi
Noguchi Yuki
Ichimura Takumi
Mackin Kenneth J.
収録物名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ 186
終了ページ 191
抄録
Adaptive tree structured clustering (ATSC) is our proposed divisive hierarchical clustering method that recursively divides a data set into 2 subsets using self-organizing feature map (SOM). In each partition, the data set is quantized by SOM and the quantized data is divided using agglomerative hierarchical clustering. ATSC can divide data sets regardless of data size in feasible time. On the other hand clustering result stability of ATSC is equally unstable as other divisive hierarchical clustering and partitioned clustering methods. In this paper, we apply cluster ensemble for each data partition of ATSC in order to improve stability. Cluster ensemble is a framework for improving partitioned clustering stability. As a result of applying cluster ensemble, ATSC yields unique clustering results that could not be yielded by previous hierarchical clustering methods. This is because a different class distances function is used in each division in ATSC.
NDC分類
技術・工学 [ 500 ]
言語
英語
資源タイプ 会議発表論文
出版者
IEEE SMC Hiroshima Chapter
発行日 2009-11
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/