Linear 3-D object pose estimation with dense sample images : Discussions about limitation of parameter estimation ability by the linear regressions

Proceedings of MVA 2009 : IAPR Conference on Machine Vision Applications 287-290 頁 2009-05 発行
アクセス数 : 821
ダウンロード数 : 113

今月のアクセス数 : 3
今月のダウンロード数 : 0
ファイル情報(添付)
MVA2009_08-20.pdf 815 KB 種類 : 全文
タイトル ( eng )
Linear 3-D object pose estimation with dense sample images : Discussions about limitation of parameter estimation ability by the linear regressions
作成者
Amano Toshiyuki
収録物名
Proceedings of MVA 2009 : IAPR Conference on Machine Vision Applications
開始ページ 287
終了ページ 290
抄録
In the image parameter estimation by the linear regression, it has very high degrees of freedom for the decision of regression coefficients, because the dimension of image vector is huge high. In this paper, we discuss its potential by the learning of the dense samples. For the learning process, we employed a sequential regression coefficient calculation algorithm and realize its calculation for dense samples with reasonable computational cost. Through the experimental result, we discuss about the limitation of parameter estimation ablity by the linear regression.
NDC分類
電気工学 [ 540 ]
言語
英語
資源タイプ 会議発表論文
出版者
Machine Vision and Application Organization
発行日 2009-05
権利情報
Copyright (c) 2009 MVA Conference Committee
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス