Possibly longest food chain : Analysis of a mathematical model

Mathematical Modelling of Natural Phenomena 3 巻 4 号 131-160 頁 2008 発行
アクセス数 : 687
ダウンロード数 : 375

今月のアクセス数 : 6
今月のダウンロード数 : 4
ファイル情報(添付)
MMNP_3_131.pdf 515 KB 種類 : 全文
タイトル ( eng )
Possibly longest food chain : Analysis of a mathematical model
作成者
Matsuoka T.
収録物名
Mathematical Modelling of Natural Phenomena
3
4
開始ページ 131
終了ページ 160
抄録
We consider the number of trophic levels in a food chain given by the equilibrium state for a simple mathematical model with ordinary differential equations which govern the temporal variation of the energy reserve in each trophic level. When a new trophic level invades over the top of the chain, the chain could lengthen by one trophic level. We can derive the condition that such lengthening could occur, and prove that the possibly longest chain is globally stable. In some specific cases, we find that the possibly longest chain is such that the lower trophic level has a greater energy reserve than the higher has, so that the distribution of energy reserves can be regarded to have a pyramid shape, whereas, if any of its trophic levels is removed, the pyramid shape cannot be maintained. Further, we find the condition that arbitrary long chain can be established. In such unbounded case, we prove that any chain could not have the pyramid shape of energy reserve distribution.
著者キーワード
food chain
energy reserve
trophic level
mathematical model
NDC分類
生物科学・一般生物学 [ 460 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
EDP Sciences
発行日 2008
権利情報
Copyright (c) 2008 EDP Sciences
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[DOI] 10.1051/mmnp:2008067
[DOI] http://dx.doi.org/10.1051/mmnp:2008067