Multivariate Analysis for Fault Diagnosis System
Fourth International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2008
54-58 頁
2008-12 発行
アクセス数 : 508 件
ダウンロード数 : 79 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00025620
ファイル情報(添付) |
10-05-PS080001.pdf
452 KB
種類 :
全文
|
タイトル ( eng ) |
Multivariate Analysis for Fault Diagnosis System
|
作成者 |
Sayed Hanaa E.
Gabbar Hossam A.
Miyazaki Shigeji
|
収録物名 |
Fourth International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2008
|
開始ページ | 54 |
終了ページ | 58 |
抄録 |
Many multivariate techniques have been applied to diagnose faults such as Principal Component Analysis (PCA), Fisher's Discriminant Analysis (FDA), and Discriminant Partial Least Squares (DPLS). However, it has been shown that FDA and DPLS are more proficient than PCA for diagnosing faults. And recently applying kernel on FDA which is called KFDA (Kernel FDA) has showed outperformance than linear FDA based method. We propose in this research work an advanced KFDA for faults classification with Building knowledge base for faults structure using FSN. A case study is done on a chemical G-Plant process, constructed and experimental runs are done in Okayama University, Japan. The results are showing improving performance of fault detection rate for the new model over FDA.
|
著者キーワード |
KFDA
Fault Diagnosis
Genetic Algorithm
Process Monitoring
|
NDC分類 |
技術・工学 [ 500 ]
|
言語 |
英語
|
資源タイプ | 会議発表論文 |
出版者 |
IEEE SMC Hiroshima Chapter
|
発行日 | 2008-12 |
権利情報 |
(c) Copyright by IEEE SMC Hiroshima Chapter.
|
出版タイプ | Version of Record(出版社版。早期公開を含む) |
アクセス権 | オープンアクセス |
収録物識別子 |
[ISSN] 1883-3977
|