Precise determination of phase relations in pyrolite across the 660 km seismic discontinuity by in situ X-ray diffraction and quench experiments

Physics of The Earth and Planetary Interiors 143-144 巻 185-199 頁 2004-06-15 発行
アクセス数 : 677
ダウンロード数 : 193

今月のアクセス数 : 2
今月のダウンロード数 : 2
ファイル情報(添付)
PEPI_143-144_185.pdf 1.56 MB 種類 : 全文
タイトル ( eng )
Precise determination of phase relations in pyrolite across the 660 km seismic discontinuity by in situ X-ray diffraction and quench experiments
作成者
Nishiyama Norimasa
Irifune Tetsuo
Inoue Toru
Ando Jun-ichi
Funakoshi Ken-ichi
収録物名
Physics of The Earth and Planetary Interiors
143-144
開始ページ 185
終了ページ 199
抄録
Mineral assemblage changes in a pyrolite composition with increasing pressure were observed by in situ X-ray diffraction and quench experiments at pressures near that of the 660 km seismic discontinuity and at a fixed temperature of 1600 °C. According to results obtained by in situ X-ray diffraction experiments, ringwoodite (Rw) was observed with majorite garnet and CaSiO3-rich perovskite at pressures of about 20–22 GPa. Dissociation of ringwoodite to MgSiO3-rich perovskite and magnesiowüstite (Mw) was completed at 22.0±0.2 GPa according to Matsui et al.'s periclase pressure scale, and at 21.7±0.1 GPa according to Shim et al.'s gold pressure scale. Majorite garnet persisted to about 24 GPa where pyrolite transformed to a lower mantle mineral assemblage, i.e. MgSiO3-perovskite, CaSiO3-rich perovskite, and magnesiowüstite. Thus, majorite garnet coexists with the lower mantle assemblage at pressures of about 22–24 GPa. In the quench experiments, an assemblage of MgSiO3-perovskite, magnesiowüstite, CaSiO3-rich perovskite, and majorite garnet was synthesized at 22.5 GPa and 1600 °C, in which Mg-perovskite contained 2.8 wt.% Al2O3, and was significantly poorer in Fe than coexisting magnesiowüstite. The Fe–Mg partition coefficient between Mg-perovskite and magnesiowüstite including ferric iron (Kapp=0.27±0.06) is very close to that in the Al-free system, which suggests that these P–T conditions are in the vicinity of those of ringwoodite decomposition. Both the results of in situ X-ray diffraction and quench experiments in the present study yield a convergent result that ringwoodite decomposes into Mg-perovskite and magnesiowüstite before the garnet-to-perovskite transition at 1600 °C in pyrolite. The relation between the Al content in Mg-perovskite and Kapp in pyrolite is non-linear, which is consistent with the Fe–Mg partitioning between Mg-perovskite and magnesiowüstite previously reported for a simpler MgO–FeO–Al2O3–SiO2 system.
著者キーワード
Pyrolite
660 km seismic discontinuity
Ringwoodite
Majorite garnet
In situ X-ray diffraction experiments
Fe–Mg partitioning
NDC分類
地球科学・地学・地質学 [ 450 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2004-06-15
権利情報
Copyright (c) 2004 Published by Elsevier Science B.V.
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0031-9201
[DOI] 10.1016/j.pepi.2003.08.010
[NCID] AA00773963
[DOI] http://dx.doi.org/10.1016/j.pepi.2003.08.010