Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline

Journal of Chemical Physics 123 巻 12 号 2005-09-22 発行
アクセス数 : 864
ダウンロード数 : 231

今月のアクセス数 : 7
今月のダウンロード数 : 4
ファイル情報(添付)
JCP_123_124316.pdf 428 KB 種類 : 全文
タイトル ( eng )
Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline
作成者
Yamada Yuji
Okano Jun-ichi
Mikami Naohiko
収録物名
Journal of Chemical Physics
123
12
抄録
Intramolecular vibrational energy redistribution (IVR) of the N H2 symmetric and asymmetric stretching vibrations of jet-cooled aniline has been investigated by picosecond time-resolved IR-UV pump-probe spectroscopy. A picosecond IR laser pulse excited the N H2 symmetric or asymmetric stretching vibration of aniline in the electronic ground state and the subsequent time evolutions of the excited level as well as redistributed levels were observed by a picosecond UV pulse. The IVR lifetimes for symmetric and asymmetric stretches were obtained to be 18 and 34 ps, respectively. In addition, we obtained the direct evidence that IVR proceeds via two-step bath states; that is, the N H2 stretch energy first flows into the doorway state and the energy is further dissipated into dense bath states. The rate constants of the second step were estimated to be comparable to or slower than those of the first step IVR. The relaxation behavior was compared with that of IVR of the OH stretching vibration of phenol [Y. Yamada, T. Ebata, M. Kayano, and M. Mikami J. Chem. Phys. 120, 7400 (2004)]. We found that the second step IVR process of aniline is much slower than that of phenol, suggesting a large difference of the "doorway state↔the dense bath states" anharmonic coupling strength between the two molecules. We also observed IVR of the CH stretching vibrations, which showed much faster IVR behavior than that of the N H2 stretches. The fast relaxation is described by the interference effect, which is caused by the coherent excitation of the quasistationary states.
言語
英語
資源タイプ 学術雑誌論文
出版者
American Institute of Physics
発行日 2005-09-22
権利情報
Copyright (c) 2005 American Institute of Physics.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0021-9606
[DOI] 10.1063/1.2039087
[NCID] AA00694991
[DOI] http://dx.doi.org/10.1063/1.2039087