Particle Swarm Optimizationを用いた階層型ニューラルネットワークの一構成

アクセス数 : 1037
ダウンロード数 : 1245

今月のアクセス数 : 3
今月のダウンロード数 : 9
File
AA11618725_55_71.pdf 720 KB 種類 : fulltext
Title ( jpn )
Particle Swarm Optimizationを用いた階層型ニューラルネットワークの一構成
Title ( eng )
Design of a Multi-Layered Neural Network Using Particle Swarm Optimization
Creator
Kato Mitsue
Source Title
広島大学大学院教育学研究科紀要. 第二部, 文化教育開発関連領域
Bulletin of the Graduate School of Education, Hiroshima University. Part. II, Arts and science education
Issue 55
Start Page 71
End Page 76
Abstract
Particle Swarm Optimization (PSO), whose concept has been established as a simulation of a simplified social milieu, is known as one of the most useful optimization methods for solving non-convex continuous optimization problems. This paper describes a new learning algorithm to simultaneously adjust connection weights included in neural networks and some user-specified parameters included in units. According to the proposed algorithm, it is possible to improve the learning properties of the neural networks, e.g., the learning cost and/or adaptability. The behavior of the proposed algorithm is examined on a numerical simulation example.
Keywords
neural network
evolutionary computation
learning
particle swarm optimization
meta heuristics
ニューラルネットワーク
進化計算
学習
PSO
メタヒューリスティク
NDC
Education [ 370 ]
Language
jpn
Resource Type departmental bulletin paper
Publisher
広島大学大学院教育学研究科
Date of Issued 2007-03-28
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 1346-5554
[NCID] AA11618725