Particle Swarm Optimizationを用いた階層型ニューラルネットワークの一構成
広島大学大学院教育学研究科紀要. 第二部, 文化教育開発関連領域 Issue 55
Page 71-76
published_at 2007-03-28
アクセス数 : 1037 件
ダウンロード数 : 1245 件
今月のアクセス数 : 3 件
今月のダウンロード数 : 9 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.15027/18310
File |
AA11618725_55_71.pdf
720 KB
種類 :
fulltext
|
Title ( jpn ) |
Particle Swarm Optimizationを用いた階層型ニューラルネットワークの一構成
|
Title ( eng ) |
Design of a Multi-Layered Neural Network Using Particle Swarm Optimization
|
Creator |
Kato Mitsue
|
Source Title |
広島大学大学院教育学研究科紀要. 第二部, 文化教育開発関連領域
Bulletin of the Graduate School of Education, Hiroshima University. Part. II, Arts and science education
|
Issue | 55 |
Start Page | 71 |
End Page | 76 |
Abstract |
Particle Swarm Optimization (PSO), whose concept has been established as a simulation of a simplified social milieu, is known as one of the most useful optimization methods for solving non-convex continuous optimization problems. This paper describes a new learning algorithm to simultaneously adjust connection weights included in neural networks and some user-specified parameters included in units. According to the proposed algorithm, it is possible to improve the learning properties of the neural networks, e.g., the learning cost and/or adaptability. The behavior of the proposed algorithm is examined on a numerical simulation example.
|
Keywords |
neural network
evolutionary computation
learning
particle swarm optimization
meta heuristics
ニューラルネットワーク
進化計算
学習
PSO
メタヒューリスティク
|
NDC |
Education [ 370 ]
|
Language |
jpn
|
Resource Type | departmental bulletin paper |
Publisher |
広島大学大学院教育学研究科
|
Date of Issued | 2007-03-28 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 1346-5554
[NCID] AA11618725
|