Some inequalities for the Poincaré metric of plane domains
Mathematische Zeitschrift Volume 250 Issue 4
Page 885-906
published_at 2005-08
アクセス数 : 498 件
ダウンロード数 : 153 件
今月のアクセス数 : 4 件
今月のダウンロード数 : 3 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00017233
File |
MZ_250_885.pdf
337 KB
種類 :
fulltext
|
Title ( eng ) |
Some inequalities for the Poincaré metric of plane domains
|
Creator |
Sugawa Toshiyuki
Vuorinen Matti
|
Source Title |
Mathematische Zeitschrift
|
Volume | 250 |
Issue | 4 |
Start Page | 885 |
End Page | 906 |
Abstract |
In this paper the Poincaré (or hyperbolic) metric and the associated distance are investigated for a plane domain based on the detailed properties of those for the particular domain In particular another proof of a recent result of Gardiner and Lakic is given with explicit constant. This and some other constants in this paper involve particular values of complete elliptic integrals and related special functions. A concrete estimate for the hyperbolic distance near a boundary point is also given from which refinements of Littlewood's theorem are derived.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Springer
|
Date of Issued | 2005-08 |
Rights |
Copyright (c) 2005 Springer-Verlag "The original publication is available at www.springer.com
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[NCID] AA0072420X
[ISSN] 0025-5874
[DOI] 10.1007/s00209-005-0782-0
[DOI] http://dx.doi.org/10.1007/s00209-005-0782-0
isVersionOf
|