Two-dimensional nature of superconductivity in the intercalated layered systems LixHfNCl and LixZrNCl: Muon spin relaxation and magnetization measurements
Physical Review B - Condensed Matter and Materials Physics Volume 69 Issue 13
Page 134522-
published_at 2004-04
アクセス数 : 902 件
ダウンロード数 : 255 件
今月のアクセス数 : 6 件
今月のダウンロード数 : 4 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00016636
File |
PhysRevB_69_134522.pdf
1.23 MB
種類 :
fulltext
|
Title ( eng ) |
Two-dimensional nature of superconductivity in the intercalated layered systems LixHfNCl and LixZrNCl: Muon spin relaxation and magnetization measurements
|
Creator |
Ito T.
Fukaya A.
Gat-Malureanu I. M.
Larkin M. I.
Russo P. L.
Savici A.
Uemura Y. J.
Groves K.
Breslow R.
Hotehama K.
Kyriakou P.
Rovers M.
Luke G. M.
Kojima K. M.
|
Source Title |
Physical Review B - Condensed Matter and Materials Physics
|
Volume | 69 |
Issue | 13 |
Start Page | 134522 |
Abstract |
We report muon spin relaxation (μSR) and magnetization measurements, together with synthesis and characterization, of the Li-intercalated layered superconductors LixHfNCl and LixZrNCl with/without cointercalation of THF (tetrahydrofuran) or propylene carbonate. The three-dimensional superfluid density ns/m* (superconducting carrier density/effective mass) as well as the two-dimensional superfluid density ns2D/m*ab [two-dimensional (2D) area density of superconducting carriers/ab-plane effective mass] have been derived from the μSR results of the magnetic-field penetration depth λ ab observed with external magnetic field applied perpendicular to the 2D honeycomb layer of HfN/ZrN. In a plot of Tc versus n s2D/m*ab, most of the results lie close to the linear relationship found for underdoped high-Tc cuprate (HTSC) and layered organic BEDT (bis(ethylenedithio)) superconductors. In Li xZrNCl without THF intercalation, the superfluid density and T c for x = 0.17 and 0.4 do not show much difference, reminiscent of μSR results for some overdoped HTSC systems. Together with the absence of dependence of Tc on average interlayer distance among ZrN/HfN layers, these results suggest that the 2D superfluid density ns2D/m* ab is a dominant determining factor for Tc in the intercalated nitride-chloride systems. We also report μSR and magnetization results on depinning of flux vortices, and the magnetization results for the upper critical field Hc2 and the penetration depth λ. A reasonable agreement was obtained between μSR and magnetization estimates of λ. We discuss the two-dimensional nature of superconductivity in the nitride-chloride systems based on these results.
|
NDC |
Physics [ 420 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
American Physical Society
|
Date of Issued | 2004-04 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[NCID] AA11187113
[ISSN] 1098-0121
[DOI] 10.1103/PhysRevB.69.134522
[DOI] http://dx.doi.org/10.1103/PhysRevB.69.134522
|