Sum-discrepancy test on pseudorandom number generators

Mathematics and Computers in Simulation 62 巻 3-6 号 431-442 頁 2003-03 発行
アクセス数 : 880
ダウンロード数 : 184

今月のアクセス数 : 3
今月のダウンロード数 : 2
ファイル情報(添付)
MathComSimu_62_431.pdf 149 KB 種類 : 全文
タイトル ( eng )
Sum-discrepancy test on pseudorandom number generators
作成者
Nishimura Takuji
収録物名
Mathematics and Computers in Simulation
62
3-6
開始ページ 431
終了ページ 442
抄録
We introduce a non-empirical test on pseudorandom number generators (prng), named sum-discrepancy test. We compute the distribution of the sum of consecutive m outputs of a prng to be tested, under the assumption that the initial state is uniformly randomly chosen. We measure its discrepancy from the ideal distribution, and then estimate the sample size which is necessary to reject the generator. These tests are effective to detect the structure of the outputs of multiple recursive generators with small coefficients, in particular that of lagged Fibonacci generators such as random() in BSD-C library, as well as add-with-carry and subtract-with-borrow generators like RCARRY. The tests show that these generators will be rejected if the sample size is of order 106. We tailor the test to generators with a discarding procedure, such as ran_array and RANLUX, and exhibit empirical results. It is shown that ran_array with half of the output discarded is rejected if the sample size is of the order of 4×1010. RANLUX with luxury level 1 (i.e. half of the output discarded) is rejected if the sample size is of the order of 2×108, and RANLUX with luxury level 2 (i.e. roughly 3/4 is discarded) will be rejected for the sample size of the order of 2.4×1018. In our previous work, we have dealt with the distribution of the Hamming weight function using discrete Fourier analysis. In this work, we replace the Hamming weight with the continuous sum, using a classical Fourier analysis, i.e. Poisson's summation formula and Levy's inversion formula.
著者キーワード
Random number generation
Fourier transform
Statistical test
NDC分類
統計 [ 350 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier Science
発行日 2003-03
権利情報
Copyright (c) 2003 Elsevier Science
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0378-4754
[DOI] 10.1016/S0378-4754(02)00227-6
[NCID] AA00723761
[DOI] http://dx.doi.org/10.1016/S0378-4754(02)00227-6 ~の異版である