Chaotic pulses for discrete reaction diffusion systems
SIAM Journal on Applied Dynamical Systems 4 巻 3 号
733-754 頁
2005 発行
アクセス数 : 722 件
ダウンロード数 : 276 件
今月のアクセス数 : 2 件
今月のダウンロード数 : 1 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00014679
ファイル情報(添付) |
SIAM_J_AppDynSys4_723.pdf
4.3 MB
種類 :
全文
|
タイトル ( eng ) |
Chaotic pulses for discrete reaction diffusion systems
|
作成者 |
Nishiura Y
Ueyama Daishin
Yanagita T
|
収録物名 |
SIAM Journal on Applied Dynamical Systems
|
巻 | 4 |
号 | 3 |
開始ページ | 733 |
終了ページ | 754 |
著者キーワード |
Bifurcation theory
Chaos
Dissipative systems
Lattice differential equation
LDE
Localized pulse
|
内容記述 |
Existence and dynamics of chaotic pulses on a one-dimensional lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide with each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on one-dimensional lattice, i.e., an infinite system of ODEs with nearest interaction of diffusive type. Besides the usual standing and traveling pulses, a new type of localized pattern, which moves chaotically on a lattice, is found numerically. Employing the strength of diffusive interaction as a bifurcation parameter, it is found that the route from standing pulse to chaotic pulse is of intermittent type. If two chaotic pulses collide with appropriate timing, they form a periodic oscillating pulse called a molecular pulse. Interaction among many chaotic pulses is also studied numerically.
|
NDC分類 |
数学 [ 410 ]
|
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Society for Industrial and Applied Mathematics
|
発行日 | 2005 |
権利情報 |
Copyright (c) 2005 Society for Industrial and Applied Mathematics
|
出版タイプ | Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版) |
アクセス権 | オープンアクセス |
収録物識別子 |
[ISSN] 1536-0040
[DOI] 10.1137/040608714
[DOI] http://dx.doi.org/10.1137/040608714
~の異版である
|