Chaotic pulses for discrete reaction diffusion systems

SIAM Journal on Applied Dynamical Systems 4 巻 3 号 733-754 頁 2005 発行
アクセス数 : 722
ダウンロード数 : 276

今月のアクセス数 : 2
今月のダウンロード数 : 1
ファイル情報(添付)
SIAM_J_AppDynSys4_723.pdf 4.3 MB 種類 : 全文
タイトル ( eng )
Chaotic pulses for discrete reaction diffusion systems
作成者
Nishiura Y
Ueyama Daishin
Yanagita T
収録物名
SIAM Journal on Applied Dynamical Systems
4
3
開始ページ 733
終了ページ 754
著者キーワード
Bifurcation theory
Chaos
Dissipative systems
Lattice differential equation
LDE
Localized pulse
内容記述
Existence and dynamics of chaotic pulses on a one-dimensional lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide with each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on one-dimensional lattice, i.e., an infinite system of ODEs with nearest interaction of diffusive type. Besides the usual standing and traveling pulses, a new type of localized pattern, which moves chaotically on a lattice, is found numerically. Employing the strength of diffusive interaction as a bifurcation parameter, it is found that the route from standing pulse to chaotic pulse is of intermittent type. If two chaotic pulses collide with appropriate timing, they form a periodic oscillating pulse called a molecular pulse. Interaction among many chaotic pulses is also studied numerically.
NDC分類
数学 [ 410 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Society for Industrial and Applied Mathematics
発行日 2005
権利情報
Copyright (c) 2005 Society for Industrial and Applied Mathematics
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1536-0040
[DOI] 10.1137/040608714
[DOI] http://dx.doi.org/10.1137/040608714 ~の異版である