A Recurrent Log-Linearized Gaussian Mixture Network

IEEE Transactions on Neural Networks 14 巻 2 号 304-316 頁 2003 発行
アクセス数 : 1230
ダウンロード数 : 358

今月のアクセス数 : 6
今月のダウンロード数 : 1
ファイル情報(添付)
IEEE_TNN_14_2_304-316_2003.pdf 861 KB 種類 : 全文
タイトル ( eng )
A Recurrent Log-Linearized Gaussian Mixture Network
作成者
Bu Nan
Fukuda Osamu
Kaneko Makoto
収録物名
IEEE Transactions on Neural Networks
14
2
開始ページ 304
終了ページ 316
抄録
Context in time series is one of the most useful andinteresting characteristics for machine learning. In some cases, thedynamic characteristic would be the only basis for achieving a possibleclassification. A novel neural network, which is named “a recurrentlog-linearized Gaussian mixture network (R-LLGMN)," isproposed in this paper for classification of time series. The structureof this network is based on a hidden Markov model (HMM),which has been well developed in the area of speech recognition.R-LLGMN can as well be interpreted as an extension of a probabilisticneural network using a log-linearized Gaussian mixturemodel, in which recurrent connections have been incorporated tomake temporal information in use. Some simulation experimentsare carried out to compare R-LLGMN with the traditional estimatorof HMM as classifiers, and finally, pattern classification experimentsfor EEG signals are conducted. It is indicated from theseexperiments that R-LLGMN can successfully classify not only artificialdata but real biological data such as EEG signals.
著者キーワード
EEG
Gaussian mixture model
hidden Markov model (HMM)
log-linearized model
neural networks (NNs)
pattern classification
recurrent neural networks (RNNs)
NDC分類
機械工学 [ 530 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
IEEE
発行日 2003
権利情報
Copyright (c) 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1045-9227
[DOI] 10.1109/TNN.2003.809403
[NCID] AA10736045
[DOI] http://dx.doi.org/10.1109/TNN.2003.809403 ~の異版である