Dehn surgeries on knots which yield lens spaces and genera of knots

Mathematical proceedings of the Cambridge Philosophical Society 129 巻 3 号 501-515 頁 2000 発行
アクセス数 : 1029
ダウンロード数 : 264

今月のアクセス数 : 0
今月のダウンロード数 : 0
ファイル情報(添付)
タイトル ( eng )
Dehn surgeries on knots which yield lens spaces and genera of knots
作成者
Goda Hiroshi
収録物名
Mathematical proceedings of the Cambridge Philosophical Society
129
3
開始ページ 501
終了ページ 515
抄録
It is an interesting open question when Dehn surgery on a knot in the 3-sphere S3 can produce a lens space (see [10, 12]). Some studies have been made for special knots; in particular, the question is completely solved for torus knots [21] and satellite knots [3, 29, 31]. It is known that there are many examples of hyperbolic knots which admit Dehn surgeries yielding lens spaces. For example, Fintushel and Stern [8] have shown that 18- and 19-surgeries on the ([minus sign]2, 3, 7)-pretzel knot give lens spaces L(18, 5) and L(19, 7), respectively. However, there seems to be no essential progress on hyperbolic knots. It might be a reason that some famous classes of hyperbolic knots, such as 2-bridge knots [26], alternating knots [5], admit no surgery yielding lens spaces.In this paper we focus on the genera of knots to treat the present condition methodically and show that there is a constraint on the order of the fundamental group of the resulting lens space obtained by Dehn surgery on a hyperbolic knot. Also, this new standpoint enables us to present a conjecture concerning such a constraint, which holds for all known examples.
NDC分類
数学 [ 410 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Cambridge University Press
発行日 2000
権利情報
Copyright (c) 2000 Cambridge University Press
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0305-0041
[DOI] 10.1017/S0305004100004692
[DOI] http://dx.doi.org/10.1017/S0305004100004692 ~の異版である