Toroidal Surgeries on Hyperbolic Knots, II
The Asian journal of mathematics Volume 7 Issue 1
Page 139-146
published_at 2003-03
アクセス数 : 1025 件
ダウンロード数 : 188 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00014105
File |
AJM_7_1_139-146_2003.pdf
125 KB
種類 :
fulltext
|
Title ( eng ) |
Toroidal Surgeries on Hyperbolic Knots, II
|
Creator | |
Source Title |
The Asian journal of mathematics
|
Volume | 7 |
Issue | 1 |
Start Page | 139 |
End Page | 146 |
Abstract |
For a hyperbolic knot K in S3, a toroidal surgery on K is integral or half-integral. In the previous paper, we proved that all integers occur among the toroidal slopes of hyperbolic knots. Hence there is no universal upper bound for toroidal slopes, generally. We propose an upper bound in terms of genera of knots, and we show that this is the case for two special but important classes, i.e., alternating knots and genus one knots.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
International Press
|
Date of Issued | 2003-03 |
Rights |
First published in The Asian Journal of Mathematics in vol.7 no.1 2003, published by International Press.
Copyright (c) 2003 International Press
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 1093-6106
|