Invariant subvarieties of the 3-tensor space C^2⨂C^2⨂C^2
広島大学総合科学部紀要. IV, 理系編 Volume 20
Page 1-18
published_at 1994-12-28
アクセス数 : 1300 件
ダウンロード数 : 99 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.15027/641
File | |
Title ( eng ) |
Invariant subvarieties of the 3-tensor space C^2⨂C^2⨂C^2
|
Creator | |
Contributors | 国立情報学研究所 |
Source Title |
広島大学総合科学部紀要. IV, 理系編
Memoirs of the Faculty of Integrated Arts and Sciences, Hiroshima University. IV, Science reports
|
Volume | 20 |
Start Page | 1 |
End Page | 18 |
Abstract |
We classify G-invariant subvarieties of the 3-tensor space C^2⨂C^2⨂C^2 that are defined by polynomials with degree≤6,where G=GL(2,C)×GL(2,C)×GL(2,C). We also calculate the character fo S^p(C^2⨂C^2⨂C^2), determine the generators of each irreducible component of S^p(C^2⨂C^2⨂C^2), and obtain some curious identities between them that play a fundamental role in classifying invariant subvarieties.
|
Keywords |
3-tensor space
variety
invariant
representation
character
Schur function
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
広島大学総合科学部
|
Date of Issued | 1994-12-28 |
Publish Type | Version of Record |
Access Rights | open access |
Date |
[Created] 2006-03-21
|
Source Identifier |
[ISSN] 1340-8364
[NCID] AN10435936
|