On 3-Dimensional contact metric manifolds

アクセス数 : 1625
ダウンロード数 : 158

今月のアクセス数 : 4
今月のダウンロード数 : 1
File
rikei28_04.pdf 41.9 KB 種類 : fulltext
Title ( eng )
On 3-Dimensional contact metric manifolds
Creator
Kim Byung Hak
Choi Jin Hyuk
Contributors 国立情報学研究所
Source Title
広島大学総合科学部紀要. IV, 理系編
Memoirs of the Faculty of Integrated Arts and Sciences, Hiroshima University. IV, Science reports
Volume 28
Start Page 29
End Page 33
Abstract
Let M be a 3-dimensional almost contact metric manifold satisfying (*)-condition. We denote such amanifold by M*. We prove that if M* is -Einstein, then M* is either Sasakian or cosymplectic manifold, andis a space of constant curvature. Consequently M* is either flat or isometric to the 3-dimensional unit sphereif M* is complete and simply connected.
Keywords
Conformal curvature tensor
almost contact metric manifold
space of constant curvature
NDC
Mathematics [ 410 ]
Language
eng
Resource Type departmental bulletin paper
Publisher
広島大学総合科学部
Date of Issued 2002-12
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 1340-8364
[NCID] AN10435936