On 3-Dimensional contact metric manifolds
広島大学総合科学部紀要. IV, 理系編 Volume 28
Page 29-33
published_at 2002-12
アクセス数 : 1625 件
ダウンロード数 : 158 件
今月のアクセス数 : 4 件
今月のダウンロード数 : 1 件
この文献の参照には次のURLをご利用ください : https://doi.org/10.15027/149
File |
rikei28_04.pdf
41.9 KB
種類 :
fulltext
|
Title ( eng ) |
On 3-Dimensional contact metric manifolds
|
Creator |
Kim Byung Hak
Choi Jin Hyuk
|
Contributors | 国立情報学研究所 |
Source Title |
広島大学総合科学部紀要. IV, 理系編
Memoirs of the Faculty of Integrated Arts and Sciences, Hiroshima University. IV, Science reports
|
Volume | 28 |
Start Page | 29 |
End Page | 33 |
Abstract |
Let M be a 3-dimensional almost contact metric manifold satisfying (*)-condition. We denote such amanifold by M*. We prove that if M* is -Einstein, then M* is either Sasakian or cosymplectic manifold, andis a space of constant curvature. Consequently M* is either flat or isometric to the 3-dimensional unit sphereif M* is complete and simply connected.
|
Keywords |
Conformal curvature tensor
almost contact metric manifold
space of constant curvature
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
広島大学総合科学部
|
Date of Issued | 2002-12 |
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 1340-8364
[NCID] AN10435936
|