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ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS
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Abstract
Let M be a 3-dimensional almost contact metric manifold satisfying (x)-condition. We denote such a
manifold by M*. We provethat if M* is n-Einstein, then M* is either Sasakian or cosymplectic manifold, and
isaspace of constant curvature. Conseguently M* is either flat or isometric to the 3-dimensional unit sphere
if M* is complete and simply connected.

1. Introduction

The conformal curvature tensor C isinvariant under conformal transformations and vanishesidentically
for 3-dimensional manifolds. Using thisfact many authors|[1, 3, 4, 6] studied 3-dimensional almost contact
manifolds. In[5], they introduced a new class of almost contact manifold M* containing quasi-Sasakian and
trans-Sasakian structure. Moreover they constructed non-trivial examples. In this paper, we study a 3-
dimensional n-Einstein manifold M* by use of the fact that C vanishesidentically and the special form of
Ricci curvature. Consequently, we prove that the 3-dimensional n-Einstein manifold M* becomes either
Sasakian or cosymplectic manifold, and is a space of constant curvature. In the cosymplectic case, M* isflat,
and if M* is Sasakian, complete and simply connected, then M* isisometric to the 3-dimensional unit sphere,
that is M* is either flat or isometric to S® (1) under this topological condition.

2. Almost contact metric structure

Let M be an m-dimensional real differentiable manifold of class C” covered by a system of coordinate
nei ghborhoods{U ; x“} , inwhich there are given atensor field @of type (1,1), avector field £ and a1-form n
satisfying

(2.2) @X=-X+1(X)& @&=0, n(@x)=0, n(&)=1

for any vector field X on M. Such aset of (¢, & 1) is called an almost contact structure and we call a
manifold with an almost contact structure an almost contact manifold. In an almost contact manifold, if there
is given a Riemannian metric ¢ such that
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g(oX, ) = g(X.Y) = (X))

for all vector fields X and Y on M, we say M has an almost contact metric structureandg iscalled a
compatible metric. Setting Y = &, we have immediately n(X) = g( X ).

The fundamental 2-form @& is defined by CD(X,Y) = g((pX,Y). It is known that the almost contact
structure (¢, & ) isnormal if and only if the Nijenhuis tensor

N(X,Y) =[@ d(X,Y) +2dn(X,Y)¢

vanishes, where[ , ] is abracket operation and d denotes the exterior derivative. An amost contact metric
structure (qo, én, g) on M issaid to be
(8) Sasakian if ® =dn and (¢, & n)isnormal,
(b) cosymplecticif @ and ) are closed and (g, & 1) is normal.
In [5], one of the present author defined a new class of almost contact metric structure on M which
satisfies
(*) dP=0, O,& ApX and (@ &n) isnormal
for asmooth function A on M and [ denotes the Riemannian connection for g. Briefly, we denote such a

manifold by M*. Itiseasily seenthat M* iscosymplecticif A =0, and Sasakian if A isanon-zero constant.

— Theorem 1[5]. On M*, we have

(22) (O:0)(Y.2) = { n(Y)g(X.2) - n(Z)g(X.Y} .
2.3) R(X, &)Y = (XA)(@Y) + X{n(Y)X - g(X. V),
(2.4) =0,

@5 HEX)=(@)A+ (m-Drn(x)

where Sisthe Ricci curvature tensor and R is the curvature tensor defined by
R(X,Y)Z=[0,0 ,]Z -0y Z.
3. 3-dimensional almost contact manifolds

Let M* be a 3-dimensional manifold satisfying (x). Itiswell known [2] that the conformal curvature
tensor of Weyl vanishesidentically for 3-dimensional manifolds. Therefore the curvature tensor R of a 3-
dimensional manifold M* is given by

(3.1) R(X,Y)Z = -S(X,2)Y + Y, 2)X - g(X, Z)QY

+ . D)X+ A% 2)Y - gl¥. 2)X,
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wherer isthe scalar curvature and Q is defined by g(QX,Y) = S(X,Y). Using (2.3), (2.5) and (3.1), we have
(3.2) S(X,Y) = n(X)(9Y) A+ n(Y)(¢X) A

+%—A2D X,Y)+ 232 —%gy(x)q(v)

If we substitute (3.2) into (3.1), then we get
(3.3) R(X,Y,Z,W) = g(R(X,Y)Z,W)
= -n(X)((#2) A)g(Y. W) - n(Z)((#X) A)g(Y, W)
n(Y)((#2) A)g(x, W) + n(2)((¢¥) A)g(X, W)
= n(Y)((ew)A)g(X,2) - n(W)((¢¥) A)9(X.2)
(

+

+ ok —Egg(X,Z)g(Y,W) a(Y,2)g(X, W}
+% =324 (n(X)g(Y, W) -n(V)g(X, W) (2)
+n(")g(X,2) = n(X)g(Y, 2) (W)}.

— If weputY = ¢ in(3.3), then by (2.3) we obtain

(3.4) (XA)P(Z,W) +2%{n(Z)g(X,W) —n (W) g(X, Z}

)
= 2{n(2)g(X, W) -n(W)g(X, Z}
((ow) A n(X)n(2) - 9(x, 2}
= ((a) A n(X)(w) - g(X, W},

+

that is
(39) (XA)@(Z,W) = ((@w) A n(X)n(2) - o(X. Z}
~ () A A(X)n(w) - g(X, W},

orinlocal components
(36) ALin = A = g = @ AT ~ g

where A, =0, A andtheindicesi, j, k, t run over therange{1,2, ....,m}. From (3.5) or (3.6), we can calculate
(37 [oeif= (heo)a') = 4’ - 2fa' A,

where X = g”‘)\i. Moreover we can easily see that

la AL = 1AL

Lemma 2. Ina 3-dimensional manifold M*, the function A is constant if and only if (¢X)A =0 for all X.
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If the Ricci curvature Son M is of the form
(38) S(X,Y) = ag(X,Y) +bn(X)n(Y),
then M iscalled an n-Einstein space[1,6,7]. If M* is n-Einstein, then we have
(3.9) 3a+tb=r
and
(3.10) a+b=r-4)

by use of (2.1), (3.2) and (3.8). Henceweget a=2A? and b=r —6A%. Thereforethe Ricci curvature S
becomes

(3.11) S(X,Y) = (222)g(X,Y) +(r =642 )n(X)(Y).
If weputY =¢& in(3.11), then we get
(312 (@x)A=(r -62)n(X)
from (2.5) and (3.11). If weset X =£in(3.12), then it gives
(3.13) r=6A%
that is
(3.14) (@x)A=0
and that
(3.15) S(X,Y) = 22%g(X,Y)
from (3.11). Weseethat A isconstant from Lemma?2 and (3.14). Since 3-dimensional Einstein spaceisa

space of constant curvature, we obtain the following theorem by using Lemma 2, (3.14) and (3.15).

Theorem 3. Let M* be a 3-dimensional n-Einstein manifold. Then M* is a space of constant curvature.
Moreover M* is either Sasakian or cosymplectic manifold.

In case A =0, since M* is a space of constant curvature, we have r = 0 and hence R(X,Y)Z = 0, that isM*
isflat.

On the other hand, E. M. Moskal obtained the following result (cf. [7]).

Theorem 4. Let M be a complete and simply connected Sasakian manifold. 1f M is Einstein and of positive
curvature, then it isisometric to the unit sphere.

If A isnon-zero constant, then M* is Sasakian. Therefore this fact and Theorems 3 and 4 reduce




ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS 33

Theorem 5. Let M* be a 3-dimensional n-Einstein manifold. Then M* is either flat or isometric to S*(1) if
M* is complete and simply connected.
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