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Abstract

Let M be a 3-dimensional almost contact metric manifold satisfying (*)-condition.  We denote such a 

manifold by M*.  We prove that if M* is    -Einstein, then M* is either Sasakian or cosymplectic manifold, and 

is a space of constant curvature.  Consequently M* is either flat or isometric to the 3-dimensional unit sphere 

if M* is complete and simply connected.

1. Introduction

The conformal curvature tensor C is invariant under conformal transformations and vanishes identically 

for 3-dimensional manifolds.  Using this fact many authors [1, 3, 4, 6] studied 3-dimensional almost contact 

manifolds.  In [5], they introduced a new class of almost contact manifold M* containing quasi-Sasakian and 

trans-Sasakian structure.  Moreover they constructed non-trivial examples.  In this paper, we study a 3-

dimensional    -Einstein manifold M* by use of the fact that C vanishes identically and the special form of 

Ricci curvature.  Consequently, we prove that the 3-dimensional    -Einstein manifold M* becomes either 

Sasakian or cosymplectic manifold, and is a space of constant curvature.  In the cosymplectic case, M* is flat, 

and if M* is Sasakian, complete and simply connected, then M* is isometric to the 3-dimensional unit sphere, 

that is M* is either flat or isometric to S 3 (1) under this topological condition.

2.  Almost contact metric structure

 

Let M be an m-dimensional real differentiable manifold of class      covered by a system of coordinate 

neighborhoods             , in which there are given a tensor field    of type (1,1), a vector field    and a 1-form 

satisfying

(2.1)

for any vector field X on M.  Such a set of               is called an almost contact structure and we call a 

manifold with an almost contact structure an almost contact manifold.  In an almost contact manifold, if there 

is given a Riemannian metric     such that
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for all vector fields X and Y on M, we say M has an almost contact metric structure and    is called a 

compatible metric.  Setting            we have immediately

The fundamental 2-form     is defined by                                   It is known that the almost contact 

structure              is normal if and only if the Nijenhuis tensor 

vanishes, where [ , ] is a bracket operation and d denotes the exterior derivative.  An almost contact metric 

structure                  on M is said to be

(a) Sasakian if      =       and              is normal,

(b) cosymplectic if      and     are closed and              is normal.

In [5], one of the present author defined a new class of almost contact metric structure on M which 

satisfies

(*)

for a smooth function     on M and     denotes the Riemannian connection for   .  Briefly, we denote such a 

manifold by M*.  It is easily seen that M* is cosymplectic if          , and Sasakian if     is a non-zero constant.

Theorem 1 [5].  On M*, we have

(2.2)

(2.3)

(2.4)

(2.5)

where S is the Ricci curvature tensor and R is the curvature tensor defined by 

3.  3-dimensional almost contact manifolds

Let M* be a 3-dimensional manifold satisfying (*).  It is well known [2] that the conformal curvature 

tensor of Weyl vanishes identically for 3-dimensional manifolds.  Therefore the curvature tensor R of a 3-

dimensional manifold M* is given by 

(3.1)
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where r is the scalar curvature and Q is defined by                                  Using (2.3), (2.5) and (3.1), we have

(3.2)

If we substitute (3.2) into (3.1), then we get

(3.3)

If we put           in (3.3), then by (2.3) we obtain

(3.4)

that is

(3.5)

or in local components

(3.6)

where                 and the indices i, j, k, t run over the range {1,2, ...,m}.  From (3.5) or (3.6), we can calculate

(3.7)

where                 .  Moreover we can easily see that

Lemma 2.  In a 3-dimensional manifold M*, the function    is constant if and only if                    for all X.λ

ξ=Y

, , .g QX Y S X Y( ) = ( )

, , , , ,gR X Y Z W R X Y Z W( ) = ( )( )

,S X Y X Y Y X( ) = ( )( ) + ( )( )η φ λ η φ λ

, .g
r

X Y
r

X Y+ −



 ( ) + −



 ( ) ( )λ λ η η

2
3

2
2 2

,gX Z Y= − ( ) ( )( )η φ λ WW Z X Y W( ) − ( ) ( )( ) ( )η φ λ g ,

Y Z X W Z Y X W+ ( ) ( )( ) ( ) + ( ) ( )( ) ( )η φ λ η φ λg g, ,

Y W X Z W Y X Z− ( ) ( )( ) ( ) − ( ) ( )( ) ( )η φ λ η φ λg g, ,

X W Y Z W+ ( ) ( )( ) ( ) + ( )η φ λ ηg , φφ λX Y Z( )( ) ( )g ,

λ r
X Z Y W Y Z X W+ −



 ( ) ( ) − ( ) ( ){ }g g g g, , , ,2

2
2

λ η η ηr
X Y W Y X W Z+ −



 ( ) ( ) − ( ) ( )( ) ( ){ g g, ,

2
3 2

η η ηY X Z X Y Z W+ ( ) ( ) − ( ) ( )( )g g, , (( )} .

( ) ( ) + ( ) ( ) − ( ) ( ){ }, , ,X Z W Z X W W X Zλ λ η ηΦ 2
g g

= ( ) ( ) − ( ) ( ){ }, ,Z X W W X Zλ η η2
g g

+ ( )( ) ( ) ( ) − ( ){ },W X Z X Zφ λ η η g

− ( )( ) ( ) ( ) − ( ){ },Z X W X Wφ λ η η g ,,

k kλ ∂ λ=

, ,X Z W W X Z X Zλ φ λ η η( ) ( ) = ( )( ) ( ) ( ) − ( ){ }Φ g

, ,Z X W X Wφ λ η η− ( )( ) ( ) ( ) − ( ){ }g

,k ih h
t

t i k ik i
t

t h k hkλ φ λ η η φ λ

iλ

η η= −( ) − −( )Φ g g

X( ) = 0φ λ

k ij k ijλ λ∇ = ( )Φ Φ
2 k ij

t i
t

tΦ( ) = −4 2
2 2λ φ λ ,

i
t

t t=
2 2φ λ λ .

k ik=λ g



32 YOSHIO AGAOKA, BYUNG HAK KIM AND JIN HYUK CHOI

If the Ricci curvature S on M is of the form

(3.8)

then M is called an    -Einstein space [1,6,7].  If M* is    -Einstein, then we have 

(3.9)

and

(3.10)

by use of (2.1), (3.2) and (3.8).  Hence we get                and                    .   Therefore the Ricci curvature S 

becomes

(3.11)

If we put           in (3.11), then we get

(3.12)

from (2.5) and (3.11).  If we set           in (3.12), then it gives

(3.13)

that is

(3.14)

and that

(3.15)

from (3.11).  We see that     is constant from Lemma 2 and (3.14).  Since 3-dimensional Einstein space is a 

space of constant curvature, we obtain the following theorem by using Lemma 2, (3.14) and (3.15). 

Theorem 3.  Let M* be a 3-dimensional    -Einstein manifold.  Then M* is a space of constant curvature.  

Moreover M* is either Sasakian or cosymplectic manifold.

In case          , since M* is a space of constant curvature, we have r = 0 and hence                       , that is M* 

is flat.

On the other hand, E. M. Moskal obtained the following result (cf. [7]).  

Theorem 4.  Let M be a complete and simply connected Sasakian manifold.  If M is Einstein and of positive 

curvature, then it is isometric to the unit sphere.

If     is non-zero constant, then M* is Sasakian.  Therefore this fact and Theorems 3 and 4 reduce
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Theorem 5.  Let M* be a 3-dimensional    -Einstein manifold.  Then M* is either flat or isometric to S 3 (1) if 

M* is complete and simply connected.
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