A bifurcation diagram of solutions to semilinear elliptic equations with general supercritical growth
Journal of Differential Equations Volume 406
Page 318-337
published_at 2024-06-27
アクセス数 : 28 件
ダウンロード数 : 0 件
今月のアクセス数 : 13 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00056113
File | |
Title ( eng ) |
A bifurcation diagram of solutions to semilinear elliptic equations with general supercritical growth
|
Creator |
Miyamoto Yasuhito
|
Source Title |
Journal of Differential Equations
|
Volume | 406 |
Start Page | 318 |
End Page | 337 |
Abstract |
We study the global bifurcation diagram of the positive solutions to the problem {△u + λf(u) = 0 in B, u=0 on ∂B, where B is the unit ball in RN with N >_ 3. Under general supercritical growth conditions on f(u), we show that an unbounded bifurcation curve has no turning point, which indicates the existence of the singular extremal solution. In particular, our theory can be applied to the super-exponential cases of f(u), and we exhibit that a bifurcation curve for △u +λf(u) = 0 has the same qualitative property as a classical Gel'fand problem △u + λeu = 0 for N >_ 3 except N = 10. Main technical tools are intrinsic transformations for semilinear elliptic equations and ODE techniques.
|
Keywords |
Bifurcation diagram
Joseph-Lundgren exponent
Uniqueness
Singular extremal solution
Super-exponential
|
Descriptions |
This work was also supported by Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Elsevier
|
Date of Issued | 2024-06-27 |
Rights |
© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version.
この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
|
Publish Type | Accepted Manuscript |
Access Rights | embargoed access |
Source Identifier |
[DOI] https://doi.org/10.1016/j.jde.2024.06.026
isVersionOf
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
優臨界・臨界・劣臨界楕円型方程式の解構造の総合的研究
優臨界・臨界・劣臨界楕円型方程式の解構造の総合的研究
|
研究課題番号 |
19H01797
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
発展方程式における系統的形状解析及び漸近解析
Systematical geometric analysis and asymptotic analysis for evolution equations
|
研究課題番号 |
19H05599
|
助成機関名 |
日本学術振興会
Japan Society for the Promotion of Science
|
助成機関識別子 |
[Crossref Funder] https://doi.org/10.13039/501100001691
|
研究課題名 |
非線形楕円型偏微分方程式の解の特異性と解構造
Singularity and structure of solutions to nonlinear elliptic partial differential equations
|
研究課題番号 |
23K03167
|
Remark | The full-text file will be made open to the public on 27 June 2026 in accordance with publisher's 'Terms and Conditions for Self-Archiving' |