Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata
The Transactions of the IEICE Volume E72 Issue 6
Page 758-762
published_at 1989-06-25
アクセス数 : 516 件
ダウンロード数 : 150 件
今月のアクセス数 : 5 件
今月のダウンロード数 : 1 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00048449
File |
TransIEICE_E72-6_758.pdf
343 KB
種類 :
fulltext
|
Title ( eng ) |
Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata
|
Creator |
Harao Masateru
|
Source Title |
The Transactions of the IEICE
|
Volume | E72 |
Issue | 6 |
Start Page | 758 |
End Page | 762 |
Abstract |
A reversible cellular automaton (CA) is a "backward deterministic" CA, i.e, every configuration of it has at most one predecessor. Toffoli showed that a two-dimensional reversible cellular automaton is computation universal. He posed an open problem whether a one-dimensional reversible CA is computation universal. In this paper, we solve this problem affirmatively. This result is proved by using the previous result of Morita et al. that a 1-tape reversible Turing machine is computation universal. We give a construction method of a reversible CA which simulates a given 1-tape reversible Turing machine. To do this, we introduce a "one-dimensional partitioned cellular automaton" (1-PCA). 1-PCA has the property that the local reversibility (i.e., injectivity of a local function) is equivalent to the global reversibility, and thus it facilitates to design a reversible CA.
|
Keywords |
reversible computing
cellular automata
computational universality
|
Language |
eng
|
Resource Type | journal article |
Publisher |
電子情報通信学会
|
Date of Issued | 1989-06-25 |
Rights |
Copyright (c) 1989 IEICE
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0913-574X
[NCID] AA10684666
[URI] https://search.ieice.org/bin/summary.php?id=e72-e_6_758&category=E&lang=E&year=1989&abst=
[URI] https://search.ieice.org/
|