Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata

The Transactions of the IEICE Volume E72 Issue 6 Page 758-762 published_at 1989-06-25
アクセス数 : 516
ダウンロード数 : 150

今月のアクセス数 : 5
今月のダウンロード数 : 1
File
TransIEICE_E72-6_758.pdf 343 KB 種類 : fulltext
Title ( eng )
Computation Universality of One-Dimensional Reversible (Injective) Cellular Automata
Creator
Harao Masateru
Source Title
The Transactions of the IEICE
Volume E72
Issue 6
Start Page 758
End Page 762
Abstract
A reversible cellular automaton (CA) is a "backward deterministic" CA, i.e, every configuration of it has at most one predecessor. Toffoli showed that a two-dimensional reversible cellular automaton is computation universal. He posed an open problem whether a one-dimensional reversible CA is computation universal. In this paper, we solve this problem affirmatively. This result is proved by using the previous result of Morita et al. that a 1-tape reversible Turing machine is computation universal. We give a construction method of a reversible CA which simulates a given 1-tape reversible Turing machine. To do this, we introduce a "one-dimensional partitioned cellular automaton" (1-PCA). 1-PCA has the property that the local reversibility (i.e., injectivity of a local function) is equivalent to the global reversibility, and thus it facilitates to design a reversible CA.
Keywords
reversible computing
cellular automata
computational universality
Language
eng
Resource Type journal article
Publisher
電子情報通信学会
Date of Issued 1989-06-25
Rights
Copyright (c) 1989 IEICE
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 0913-574X
[NCID] AA10684666
[URI] https://search.ieice.org/bin/summary.php?id=e72-e_6_758&category=E&lang=E&year=1989&abst=
[URI] https://search.ieice.org/