The structure of host-guest complexes between dibenzo-18-crown-6 and water, ammonia, methanol, and acetylene : Evidence of molecular recognition on the complexation
Physical Chemistry Chemical Physics Volume 13 Issue 15
Page 6827-6836
published_at 2011-03-14
アクセス数 : 1062 件
ダウンロード数 : 248 件
今月のアクセス数 : 6 件
今月のダウンロード数 : 3 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00037647
File |
PhysChemChemPhys_2011_13_6827.pdf
3.33 MB
種類 :
fulltext
|
Title ( eng ) |
The structure of host-guest complexes between dibenzo-18-crown-6 and water, ammonia, methanol, and acetylene : Evidence of molecular recognition on the complexation
|
Creator |
Kusaka Ryoji
Kokubu Satoshi
|
Source Title |
Physical Chemistry Chemical Physics
|
Volume | 13 |
Issue | 15 |
Start Page | 6827 |
End Page | 6836 |
Abstract |
Complexes of dibenzo-18-crown-6 (DB18C6, host) with water, ammonia, methanol, and acetylene (guest), formed in supersonic jets, have been characterized by using various spectroscopic methods: laser induced fluorescence (LIF), UV-UV hole-buning (UV-UV HB), and IR-UV double resonance (IR-UV DR) spectroscopy. Firstly, we reinvestigated the conformations of bare DB18C6 (species m1 and m2) and the structure of DB18C6-H2O (species a) [R. Kusaka, Y. Inokuchi, T. Ebata, Phys. Chem. Chem. Phys., 2008, 10, 6238] by measuring the IR-UV DR spectra in the region of the methylene CH stretching vibrations. From the IR-UV DR spectra, it was found that the IR spectral feature of the methylene CH stretch of DB18C6-H2O is clearly different from those of bare DB18C6 conformers, suggesting that DB18C6 changes its conformation when it forms the complex with a water molecule. With the aid of Monte Carlo simulation for extensive conformational search and density functional calculations (at B3LYP and M05-2X/6-31+G* levels), we reassigned the species m1 and m2 to the conformers belonging to C1 and C2 symmetry, respectively. On the other hand, we confirmed the DB18C6 part in the species a to be “boat” conformation, which is an unstable structure as the bare form. Secondly, we identified nine, one, and two species for DB18C6-ammonia, -methanol, and -acetylene complexes, respectively, by the combination of LIF and UV-UV HB spectroscopy. From the IR-UV DR spectra in the methylene CH stretching region, similar conformational change was identified in the DB18C6-ammonia complex, but not in the complexes with methanol or acetylene. The structures of all the complexes were determined by analyzing the electronic transition energies, exciton splitting, and IR-UV DR spectra in the region of the OH, NH, and CH stretching vibrations. In the DB18C6-ammonia complexes, a NH3 molecule is incorporated into the cavity of the boat conformation by forming bifurcated and bidentate hydrogen-bond (H-bond), similar to the case of the DB18C6-H2O complex. On the other hand, in the DB18C6-methanol and -acetylene complexes, methanol and acetylene molecules are simply attached to the C1 and C2 conformers, respectively, with their original conformations retained. From the difference of the DB18C6 conformation depending on the type of the guest molecules, it is concluded that DB18C6 distinguishes water and ammonia from methanol and acetylene when it forms complexes, depending on whether guest molecules have an ability to form bidentate H-bonding.
|
NDC |
Chemistry [ 430 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
Royal Society of Chemistry
|
Date of Issued | 2011-03-14 |
Rights |
Copyright (c) the Owner Societies 2011
|
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 1463-9076
[DOI] 10.1039/C0CP02523B
[DOI] http://dx.doi.org/10.1039/C0CP02523B
isVersionOf
|