Risk-prediction model for acute myocardial infarction using atmospheric pressure data <Original Articles>

アクセス数 : 1466
ダウンロード数 : 224

今月のアクセス数 : 3
今月のダウンロード数 : 1
ファイル情報(添付)
JHSHU_11-2_43.pdf 1020 KB 種類 : 全文
タイトル ( jpn )
Risk-prediction model for acute myocardial infarction using atmospheric pressure data <Original Articles>
作成者
Matsumura Makoto
HEWS group
収録物名
広島大学保健学ジャーナル
Journal of health sciences, Hiroshima University
11
2
開始ページ 43
終了ページ 51
抄録
Prediction of high-risk days for onset of acute myocardial infarction (AMI) would aid prevention by taking specific actions on such days. To construct a predictive model, we investigated meteorological conditions related to high risk, with particular attention to atmospheric pressure.

The data used were records of conveyance by ambulances in the city of Hiroshima from January 1993 to December 2002, and corresponding meteorological data in the area. We used a Poisson regression model and several variables representing different critical conditions of atmospheric pressure decline. Finally, we selected the best model according to Akaike's Information Criterion (AIC).

A prediction model using a continuous variable of daily mean atmospheric temperature was established as the baseline model. Among models using different variables, one using weather pattern variables achieved the lowest AIC, showing it to be the best choice. In this model, strong winter patterns on the previous day were correlated with high risk of AMI.

The following meteorological factors were particularly related to high AMI risk: 1) A weather chart showing a strong winter pattern on the previous day, and 2) a decline in atmospheric pressure ≥ 16 hPa in addition to low atmospheric temperature. Such a strong winter pattern is easy to use and will improve performance of the Hiroshima prefectural AMI alert system.
著者キーワード
myocardial infarction
atmospheric pressure
prevention
NDC分類
医学 [ 490 ]
言語
日本語
資源タイプ 紀要論文
出版者
広島大学保健学出版会
発行日 2013-10-31
権利情報
Copyright (c) 2013 広島大学保健学出版会
出版タイプ Version of Record(出版社版。早期公開を含む)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 1347-7323
[NCID] AA11601063