Image representation for generic object recognition using higher-order local autocorrelation features on posterior probability images

Pattern Recognition 45 巻 2 号 707-719 頁 2012 発行
アクセス数 : 883
ダウンロード数 : 231

今月のアクセス数 : 1
今月のダウンロード数 : 0
ファイル情報(添付)
PatternRecog_45_707.pdf 3.53 MB 種類 : 全文
タイトル ( eng )
Image representation for generic object recognition using higher-order local autocorrelation features on posterior probability images
作成者
Matsukawa Tetsu
収録物名
Pattern Recognition
45
2
開始ページ 707
終了ページ 719
抄録
This paper presents a novel image representation method for generic object recognition by using higher-order local autocorrelations on posterior probability images. The proposed method is an extension of the bag-of-features approach to posterior probability images. The standard bag-of-features approach is approximately thought of as a method that classifies an image to a category whose sum of posterior probabilities on a posterior probability image is maximum. However, by using local autocorrelations of posterior probability images, the proposed method extracts richer information than the standard bag-of-features. Experimental results reveal that the proposed method exhibits higher classification performances than the standard bag-of-features method.
著者キーワード
Image recognition
Higher-order local autocorrelation feature
Bag-of-features
Posterior probability image
NDC分類
情報科学 [ 007 ]
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier Science BV
発行日 2012
権利情報
This is a preprint of an article submitted for consideration in Pattern Recognition (c) 2012 Elsevier B.V. ; Pattern Recognition is available online at ScienceDirect with the open URL of your article;
出版タイプ Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版)
アクセス権 オープンアクセス
収録物識別子
[ISSN] 0031-3203
[DOI] 10.1016/j.patcog.2011.07.018
[NCID] AA11948832
[DOI] http://dx.doi.org/10.1016/j.patcog.2011.07.018