Borderline Over-sampling for Imbalanced Data Classification

5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009 Page 24-29 published_at 2009-11
アクセス数 : 1007
ダウンロード数 : 814

今月のアクセス数 : 0
今月のダウンロード数 : 0
File
A1005.pdf 391 KB 種類 : fulltext
Title ( eng )
Borderline Over-sampling for Imbalanced Data Classification
Creator
Nguyen Hien M.
Cooper Eric W.
Kamei Katsuari
Source Title
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
Start Page 24
End Page 29
Abstract
Traditional classification algorithms, in many times, perform poorly on imbalanced data sets in which some classes are heavily outnumbered by the remaining classes. For this kind of data, minority class instances, which are usually much more of interest, are often misclassified. The paper proposes a method to deal with them by changing class distribution through oversampling at the borderline between the minority class and the majority class of the data set. A Support Vector Machines (SVMs) classifier then is trained to predict new unknown instances. Compared to other over-sampling methods, the proposed method focuses only on the minority class instances lying around the borderline due to the fact that this area is most crucial for establishing the decision boundary. Furthermore, new instances will be generated in such a manner that minority class area will be expanded further toward the side of the majority class at the places where there appear few majority class instances. Experimental results show that the proposed method can achieve better performance than some other over-sampling methods, especially with data sets having low degree of overlap due to its ability of expanding minority class area in such cases.
NDC
Technology. Engineering [ 500 ]
Language
eng
Resource Type conference paper
Publisher
IEEE SMC Hiroshima Chapter
Date of Issued 2009-11
Rights
(c) Copyright by IEEE SMC Hiroshima Chapter.
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 1883-3977
[URI] http://www.hil.hiroshima-u.ac.jp/iwcia/2009/