Triangle centers defined by quadratic polynomials
Mathematical Journal of Okayama University Volume 53
Page 185-216
published_at 2011
アクセス数 : 768 件
ダウンロード数 : 110 件
今月のアクセス数 : 0 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00028400
File | |
Title ( eng ) |
Triangle centers defined by quadratic polynomials
|
Creator | |
Source Title |
Mathematical Journal of Okayama University
|
Volume | 53 |
Start Page | 185 |
End Page | 216 |
Abstract |
We consider a family of triangle centers whose barycentric coordinates are given by quadratic polynomials, and determine the lines that contain an infinete number of such triangle centers. We show that for a given quadratic triangle center, there exist in general four principal lines through this center. These four principal lines possess an intimate connection with the Nagel line.
|
Keywords |
triangle center
generalized Euler line
Nagel line
principal line
Ceva conjugate
isotomic conjugate
symmetric polynomial
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | departmental bulletin paper |
Publisher |
Department of Mathematics, Faculty of Science, Okayama University
|
Date of Issued | 2011 |
Publish Type | Author’s Original |
Access Rights | open access |
Source Identifier |
[ISSN] 0030-1566
[NCID] AA00723502
[URI] http://www.math.okayama-u.ac.jp/mjou/#
|