In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.
Applied and Environmental Microbiology Volume 73 Issue 15
Page 4931-4939
published_at 2007-08
アクセス数 : 920 件
ダウンロード数 : 170 件
今月のアクセス数 : 3 件
今月のダウンロード数 : 4 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00020778
File |
AEM_73_4931.pdf
826 KB
種類 :
fulltext
|
Title ( eng ) |
In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.
|
Creator |
Tsushima Ikuo
Ogasawara Yuji
Shimokawa Masaki
Satoh Hisashi
Okabe Satoshi
|
Source Title |
Applied and Environmental Microbiology
|
Volume | 73 |
Issue | 15 |
Start Page | 4931 |
End Page | 4939 |
Abstract |
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that ""Brocadia""-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 ?m) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2? consumption rates decreased from 0.68 and 0.64 ?mol cm?2 h?1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 ?mol cm?2 h?1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2? and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.
|
NDC |
Construction. Civil engineering [ 510 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
American Society for Microbiology
|
Date of Issued | 2007-08 |
Rights |
Copyright (c) American Society for Microbiology
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0099-2240
[DOI] 10.1128/AEM.00156-07
[NCID] AA00543249
[DOI] http://dx.doi.org/10.1128/AEM.00156-07
|