In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.

Applied and Environmental Microbiology Volume 73 Issue 15 Page 4931-4939 published_at 2007-08
アクセス数 : 920
ダウンロード数 : 170

今月のアクセス数 : 3
今月のダウンロード数 : 4
File
AEM_73_4931.pdf 826 KB 種類 : fulltext
Title ( eng )
In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms.
Creator
Tsushima Ikuo
Ogasawara Yuji
Shimokawa Masaki
Satoh Hisashi
Okabe Satoshi
Source Title
Applied and Environmental Microbiology
Volume 73
Issue 15
Start Page 4931
End Page 4939
Abstract
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that ""Brocadia""-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 ?m) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2? consumption rates decreased from 0.68 and 0.64 ?mol cm?2 h?1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 ?mol cm?2 h?1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2? and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.
NDC
Construction. Civil engineering [ 510 ]
Language
eng
Resource Type journal article
Publisher
American Society for Microbiology
Date of Issued 2007-08
Rights
Copyright (c) American Society for Microbiology
Publish Type Version of Record
Access Rights open access
Source Identifier
[ISSN] 0099-2240
[DOI] 10.1128/AEM.00156-07
[NCID] AA00543249
[DOI] http://dx.doi.org/10.1128/AEM.00156-07