Twisted GFSR generators
ACM Transactions on Modeling and Computer Simulation 2 巻 3 号
179-194 頁
1992-07 発行
アクセス数 : 1093 件
ダウンロード数 : 274 件
今月のアクセス数 : 10 件
今月のダウンロード数 : 3 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00015037
ファイル情報(添付) |
ACMTraModel_2_179.pdf
176 KB
種類 :
全文
|
タイトル ( eng ) |
Twisted GFSR generators
|
作成者 | |
収録物名 |
ACM Transactions on Modeling and Computer Simulation
|
巻 | 2 |
号 | 3 |
開始ページ | 179 |
終了ページ | 194 |
抄録 |
The generalized feedback shift register(GFSR) algorithm suggested by Lewis and Payne is a widely used pseudorandom number generator, but has the following serious drawbacks: 1. Aninitialization scheme to assure higher order equidistribution is involved and is time-consuming. 2. Each bit of the generated words constitutes an m-sequence based on a primitive trinomial, which shows poor randomness with respect to weight distribution. 3. Large working area is necessary. 4. The period of sequence is far shorter than the theoretical upper bound. This paper presents the twisted GFSR(TGFSR) algorithm, as lightly but essentially modified version of the GFSR, which solves all the above problems without loss of merit. Some practical TGFSR generators were implemented and they passed strict empirical tests. These new generators are most suitable for simulation of a large distributive system, which requires a number of mutually independent pseudorandom number generators with compact size.
|
著者キーワード |
generalized feedback shift registers
matrix linear congruential generators
m-sequences
TLP-sequences
GF(2m)
|
NDC分類 |
数学 [ 410 ]
|
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
ACM
|
発行日 | 1992-07 |
権利情報 |
Copyright (c) 1998 ACM. This is the author version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Modeling and Computer Simulation,Vol.2 No.3 ; http://dx.doi.org/10.1145/146382.146383
|
出版タイプ | Author’s Original(十分な品質であるとして、著者から正式な査読に提出される版) |
アクセス権 | オープンアクセス |
収録物識別子 |
[ISSN] 1049-3301
[DOI] 10.1145/146382.146383
[NCID] AA10779230
[DOI] http://dx.doi.org/10.1145/146382.146383
~の異版である
|