Toroidal surgeries on hyperbolic knots
Proceedings of the American Mathematical Society Volume 130 Issue 9
Page 2803-2808
published_at 2002-02
アクセス数 : 1019 件
ダウンロード数 : 205 件
今月のアクセス数 : 2 件
今月のダウンロード数 : 0 件
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00014106
File |
Proc-Am-Math-Soc_130_9_2803-2808_2002.pdf
284 KB
種類 :
fulltext
|
Title ( eng ) |
Toroidal surgeries on hyperbolic knots
|
Creator | |
Source Title |
Proceedings of the American Mathematical Society
|
Volume | 130 |
Issue | 9 |
Start Page | 2803 |
End Page | 2808 |
Abstract |
For a hyperbolic knot K in S3, a toroidal surgery is Dehn surgery which yields a 3-manifold containing an incompressible torus. It is knownthat a toroidal surgery on K is an integer or a half-integer. In this paper, we prove that all integers occur among the toroidal slopes of hyperbolic knots with bridge index at most three and tunnel number one.
|
NDC |
Mathematics [ 410 ]
|
Language |
eng
|
Resource Type | journal article |
Publisher |
American Mathematical Society
|
Date of Issued | 2002-02 |
Rights |
First published in Proceedings of the American Mathematical Society in vol.130 no.9 2002, published by the American Mathematical Society.
Copyright (c) American Mathematical Society 2002
|
Publish Type | Version of Record |
Access Rights | open access |
Source Identifier |
[ISSN] 0002-9939
[DOI] 10.1090/S0002-9939-02-06420-1
[DOI] http://dx.doi.org/10.1090/S0002-9939-02-06420-1
isVersionOf
|