このエントリーをはてなブックマークに追加
ID 28451
本文ファイル
B1112.pdf 202 KB
著者
Matsushita, Shin-ya
Xu, Li
NDC
技術・工学
抄録(英)
This paper studies convergence properties of the proximal point algorithm when applied to a certain class of nonmonotone set-valued mappings. We consider an algorithm for solving an inclusion 0 ∈ T(x), where T is a metrically regular set-valued mapping acting from Rn into Rm. The algorithm is given by the follwoing iteration: x0 ∈ Rn and

xk+1 = αkxk + (1 - αk)yk, for k = 0, 1, 2, . . .,

where {αk} is a sequence in [0, 1] such that αk ≤ ¯α < 1, gk is a Lipschitz mapping from Rn into Rm and yk satisfies the following inclusion

0 ∈ gk(yk) - gk(xk) + T(yk).

We prove that if the modulus of regularity of T is sufficiently small then the sequence generated by our algorithm converges to a solution to 0 ∈ T(x).
掲載誌名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ
270
終了ページ
273
出版年月日
2009-11
出版者
IEEE SMC Hiroshima Chapter
ISSN
1883-3977
言語
英語
NII資源タイプ
会議発表論文
広大資料タイプ
会議発表論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
関連情報URL
部局名
工学研究科