このエントリーをはてなブックマークに追加
ID 28425
本文ファイル
B1005.pdf 292 KB
著者
Minegishi, Tatsuya
Ise, Masayuki
Niimi, Ayahiko
Konishi, Osamu
NDC
技術・工学
抄録(英)
Recently, because of increasing amount of data in the society, data stream mining targeting large scale data has attracted attention. The data mining is a technology of discovery new knowledge and patterns from the massive amounts of data, and what the data correspond to data stream is data stream mining. In this paper, we propose the feature selection with online decision tree. At first, we construct online type decision tree to regard credit card transaction data as data stream on data stream mining. At second, we select attributes thought to be important for detection of illegal use. We apply VFDT (Very Fast Decision Tree learner) algorithm to online type decision tree construction.
掲載誌名
5th International Workshop on Computational Intelligence & Applications Proceedings : IWCIA 2009
開始ページ
208
終了ページ
212
出版年月日
2009-11
出版者
IEEE SMC Hiroshima Chapter
ISSN
1883-3977
言語
英語
NII資源タイプ
会議発表論文
広大資料タイプ
会議発表論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
(c) Copyright by IEEE SMC Hiroshima Chapter.
関連情報URL
部局名
工学研究科