On the minimality of the corresponding submanifolds to four-dimensional solvsolitons
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00035939
ID | 35939 |
本文ファイル | |
別タイトル | 4次元可解ソリトンに対応する部分多様体の極小性について
|
著者 | |
キーワード | Lie groups
left-invariant Riemannian metrics
solvsolitons
symmetric spaces
minimal submanifolds
|
NDC |
数学
|
抄録(英) | In our previous study, the author and Tamaru proved that a left invariant Riemannian metric on a three-dimensional simply-connected solvable Lie group is a solvsoliton if and only if the corresponding sub manifold is minimal. In this paper, we study the minimality of the corresponding sub manifolds to solvsolitons on four-dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant Riemannian metric is a nilsoliton if and only if the corresponding sub manifold is minimal. On the other hand, there exists a four-dimensional simply-connected solvable Lie group so that the above correspondence does not hold. More precisely, there exists a solvsoliton whose corresponding sub manifold is not minimal, and a left-invariant Riemannian metric which is not solvsoliton and whose corresponding sub manifold is minimal.
|
言語 |
英語
|
NII資源タイプ |
学位論文
|
広大資料タイプ |
学位論文
|
DCMIタイプ | text
|
フォーマット | application/pdf
|
著者版フラグ | ETD
|
権利情報 | Copyright(c) by Author
|
関連情報(references) | Takahiro Hashinaga, On the minimality of the corresponding submanifolds to fourdimensional solvsolitons. Hiroshima Mathematical Journal (掲載決定)
|
学位記番号 | 甲第6358号
|
授与大学 | 広島大学(Hiroshima University)
|
学位名 | 博士(理学)
|
学位名の英名 | Science
|
学位の種類の英名 | doctoral
|
学位授与年月日 | 2014-03-23
|
部局名 |
理学研究科
|