このエントリーをはてなブックマークに追加
ID 17230
本文ファイル
著者
Sugawa, Toshiyuki
NDC
数学
抄録(英)
This is a survey article on domain constants related to uniform perfectness. We gather comparison theorems for various domain constants, most of which are more or less known or elementary but not stated quantitatively in the literature, and some are new or improved results. Among these theorems, our main result is a comparison of the modulus and the injectivity radius of a hyperbolic Riemann surface. Its proof relies upon a comparison of extremal and hyperbolic lengths, which seems to be interesting in itself. We include a lower estimate of the Hausdorff dimension of a compact set in the Riemann sphere by the modulus of its complement. We also discuss the variance of these domain constants under conformal, quasiconformal or Möbius maps.
掲載誌名
Complex Variables Theory and Application
36巻
4号
開始ページ
311
終了ページ
345
出版年月日
1998
出版者
Taylor & Francis
ISSN
0278-1077
NCID
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
author
権利情報
Copyright (c) 1998 Taylor & Francis
部局名
理学研究科