このエントリーをはてなブックマークに追加
ID 44512
本文ファイル
著者
Morita, Kenichi
NDC
数学
抄録(英)
We introduce the class of elementary triangular partitioned cellular automata (ETPCAs).
It is one of the simplest subclasses of two-dimensional cellular automata.
Its local transition function is described by only four simple transition rules.
In this presentation, a specific reversible ETPCA with an identification number 0347 (denoted by ETPCA 0347) is investigated.
It shows quite complex behavior, and is particularly interesting in the class of ETPCAs.
In ETPCA 0347, there is a moving pattern called a glider, which can be used as a signal in this cellular space.
There are also several useful patterns by which the moving direction and the phase of the glider are controlled.
Utilizing these operations in a tricky way, we implement a reversible logic element with one-bit memory (RLEM).
Using RLEMs we can construct any reversible Turing machine, a theoretical model of a reversible computer.
By above, we see that even from an extremely simple reversible law, reversible computers can be constructed easily in a systematic manner.
内容記述
A video presentation at the Conference of Celebration of Late Prof. Harold V. McIntosh Achievements, Puebla, Mexico, 29-30 November 2017
作成年月日
2017-11-29
言語
英語
NII資源タイプ
会議発表用資料
広大資料タイプ
会議・講演会関連資料
DCMIタイプ
movingimage
フォーマット
application/mp4
著者版フラグ
author
関連情報URL
部局名
工学研究科