このエントリーをはてなブックマークに追加
ID 34752
本文ファイル
著者
Watanabe, Kenji
Hidaka, Akinori
Otsu, Nobuyuki
NDC
情報科学
抄録(英)
In time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a measured signal sequence, the parameters of the model functions are estimated. Furthermore, in order to quantitatively analyze real measurement data and to reduce the risk of improper decisions, it is necessary to obtain the statistical characteristics from several sequences rather than just a single sequence. In the present paper, we propose an automatic method by which to analyze composite signals using non-negative factorization and an information criterion. The proposed method decomposes the composite signal sequences using non-negative factorization subjected to parametric base functions. The number of components (i.e., rank) is also estimated using Akaike's information criterion. Experiments using simulated and real data reveal that the proposed method automatically estimates the acceptable ranks and parameters.
掲載誌名
PLoS ONE
7巻
3号
開始ページ
e32352
出版年月日
2012
出版者
Public Library of Science
ISSN
1932-6203
出版者DOI
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
(c) 2012 Watanabe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This research is supported by the ordinary budget in the National Institute of Advanced Industrial Science and Technology
関連情報URL
部局名
工学研究科