このエントリーをはてなブックマークに追加
ID 50458
著者
Kawahara, Daisuke 大学院医系科学研究科(医) 広大研究者総覧
Ozawa, Shuichi 大学院医系科学研究科(医) 広大研究者総覧
Nagata, Yasushi 大学院医系科学研究科(医) 広大研究者総覧
キーワード
Deep learning
Medical imaging
Artificial intelligence
Dual-energy CT
Material decomposition
抄録(英)
Generative Adversarial Networks (GANs) have been widely used and it is expected to use for the clinical examination and image. The objective of the current study was to synthesize material decomposition images of bone-water (bone(water)) and fat-water (fat(water)) reconstructed from dual-energy computed tomography (DECT) using an equivalent kilovoltage-CT (kV-CT) image and a deep conditional GAN. The effective atomic number images were reconstructed using DECT. We used 18,084 images of 28 patients divided into two datasets: the training data for the model included 16,146 images (20 patients) and the test data for evaluation included 1938 images (8 patients). Image prediction frameworks of the equivalent single energy CT images at 120 kVp to the effective atomic number images were created. The image-synthesis framework was based on a CNN with a generator and discriminator. The mean absolute error (MAE), relative mean square error (MSE), relative root mean square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mutual information (MI) were evaluated. The Hounsfield unit (HU) difference between the synthesized and reference material decomposition images of bone(water) and fat(water) were within 5.3 HU and 20.3 HU, respectively. The average MAE, MSE, RMSE, SSIM, and MI of the synthesized and reference material decomposition of the bone(water) images were 0.8, 1.3, 0.9, 0.9, 55.3, and 0.8, respectively. The average MAE, MSE, RMSE, SSIM, and MI of the synthesized and reference material decomposition of the fat(water) images were 0.0, 0.0, 0.1, 0.9, 72.1, and 1.4, respectively. The proposed model can act as a suitable alternative to the existing methods for the reconstruction of material decomposition images of bone(water) and fat(water) reconstructed via DECT from kV-CT.
掲載誌名
Computers in Biology and Medicine
128巻
開始ページ
104111
出版年月日
2021-01
出版者
Elsevier
ISSN
0010-4825
出版者DOI
PubMedID
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
author
権利情報
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認、ご利用ください。
関連情報URL
部局名
医系科学研究科
病院
備考
Post-print version/PDF may be used in an institutional repository after an embargo period of 12 months.