Chaotic pulses for discrete reaction diffusion systems
この文献の参照には次のURLをご利用ください : https://ir.lib.hiroshima-u.ac.jp/00014679
ID | 14679 |
本文ファイル | |
著者 |
Nishiura, Y
Ueyama, Daishin
Yanagita, T
|
キーワード | Bifurcation theory
Chaos
Dissipative systems
Lattice differential equation
LDE
Localized pulse
|
NDC |
数学
|
内容記述 | Existence and dynamics of chaotic pulses on a one-dimensional lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide with each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on one-dimensional lattice, i.e., an infinite system of ODEs with nearest interaction of diffusive type. Besides the usual standing and traveling pulses, a new type of localized pattern, which moves chaotically on a lattice, is found numerically. Employing the strength of diffusive interaction as a bifurcation parameter, it is found that the route from standing pulse to chaotic pulse is of intermittent type. If two chaotic pulses collide with appropriate timing, they form a periodic oscillating pulse called a molecular pulse. Interaction among many chaotic pulses is also studied numerically.
|
掲載誌名 |
SIAM Journal on Applied Dynamical Systems
|
巻 | 4巻
|
号 | 3号
|
開始ページ | 733
|
終了ページ | 754
|
出版年月日 | 2005
|
出版者 | Society for Industrial and Applied Mathematics
|
ISSN | 1536-0040
|
出版者DOI | |
言語 |
英語
|
NII資源タイプ |
学術雑誌論文
|
広大資料タイプ |
学術雑誌論文
|
DCMIタイプ | text
|
フォーマット | application/pdf
|
著者版フラグ | author
|
権利情報 | Copyright (c) 2005 Society for Industrial and Applied Mathematics
|
関連情報URL(IsVersionOf) | http://dx.doi.org/10.1137/040608714
|
部局名 |
理学研究科
|