このエントリーをはてなブックマークに追加
ID 30710
本文ファイル
著者
NDC
物理学
抄録(英)
The transition of a counter-chemotactic particle flow from a free-flow state to a jammed state in a quasi-one-dimensional path is investigated. One of the characteristic features of such a flow is that the constituent particles spontaneously form a cluster that blocks the path, called a path-blocking cluster (PBC), and causes a jammed state when the particle density is greater than a threshold value. Near the threshold value, the PBC occasionally collapses on itself to recover the free flow. In other words, the time evolution of the size of the PBC governs the flux of a counter-chemotactic flow. In this Rapid Communication, on the basis of numerical results of a stochastic cellular automata (SCA) model, we introduce a Langevin equation model for the size evolution of the PBC that reproduces the qualitative characteristics of the SCA model. The results suggest that the emergence of the jammed state in a quasi-one-dimensional counterflow is caused by a saddle-node bifurcation.
掲載誌名
Physical Review E
82巻
2号
開始ページ
015102-1
終了ページ
015102-4
出版年月日
2010
出版者
The American Physical Society
ISSN
1539-3755
NCID
出版者DOI
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
Copyright (c) 2010 The American Physical Society
関連情報URL
部局名
工学研究科