このエントリーをはてなブックマークに追加
ID 14160
本文ファイル
著者
キーワード
Availability
coteries
distributed systems
G-nondominatedness
graph theory
mutual exclusion problems
quorums
NDC
情報科学
抄録(英)
We model a distributed system by a graph G=(V, E), where V represents the set of processes and E the set of bidirectional communication links between two processes. G may not be complete. A popular (distributed) mutual exclusion algorithm on G uses a coterie C(⊆2v), which is a nonempty set of nonempty subsets of V (called quorums) such that, for any two quorums P, Q ∈ C, 1) P∩Q ≠φ and 2) P¢Q hold. The availability is the probability that the algorithm tolerates process and/or link failures, given the probabilities that a process and a link, respectively, are operational. The availability depends on the coterie used in the algorithm. This paper proposes a method to improve the availability by transforming a given coterie.
掲載誌名
IEEE transactions on computers
48巻
7号
開始ページ
744
終了ページ
747
出版年月日
1999-07
出版者
IEEE
ISSN
0018-9340
出版者DOI
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
(c) 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
関連情報URL(IsVersionOf)
http://dx.doi.org/10.1109/12.780882
部局名
社会科学研究科