<table>
<thead>
<tr>
<th>Title</th>
<th>A Characterization of Subpluriharmonicity for a Function of Several Complex Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auther(s)</td>
<td>Abe, Makoto; Sugiyama, Shun</td>
</tr>
<tr>
<td>Citation</td>
<td>Bulletin of the Graduate School of Integrated Arts and Sciences, Hiroshima University. II, Studies in environmental sciences , 14 : 1 – 5</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2019-12-31</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>Self DOI</td>
<td>10.15027/48890</td>
</tr>
<tr>
<td>URL</td>
<td>http://ir.lib.hiroshima-u.ac.jp/00048890</td>
</tr>
<tr>
<td>Right</td>
<td>掲載された論文, 研究ノート, 要旨などの出版権・著作権は広島大学大学院総合科学研究科に帰属する。Copyright (c) 2019 Graduate School of Integrated Arts and Sciences, Hiroshima University, All rights reserved.</td>
</tr>
<tr>
<td>Relation</td>
<td></td>
</tr>
</tbody>
</table>
A Characterization of Subpluriharmonicity for a Function of Several Complex Variables

ABE Makoto1) and SUGIYAMA Shun2)

1) School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
2) Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

Abstract
We give a characterization of a subpluriharmonic function of several complex variables in the sense of Fujita (J. Math. Kyoto Univ., 30:637–649, 1990) by using polynomial functions of degree at most two.

Mathematics Subject Classification (2010): 31C10, 32U05, 31B05.
Keywords and phrases: subpluriharmonic function, subharmonic function, polynomial function.

1. Introduction

Let D be an open set of \mathbb{C}^n and let $u : D \to [-\infty, +\infty)$ be an upper semicontinuous function. According to Fujita \cite{Fujita}, we say that u is subpluriharmonic if for every relatively compact domain G in D and for every real-valued pluriharmonic function h defined near \overline{G}, the inequality $u \leq h$ on ∂G implies the inequality $u \leq h$ on \overline{G}. If $n = 1$, then an upper semicontinuous function $u : D \to [-\infty, +\infty)$, where D is an open set of $\mathbb{C} = \mathbb{R}^2$, is subpluriharmonic if and only if u is subharmonic.

By Yasuoka \cite[Theorem 1]{Yasuoka}, an upper semicontinuous function $u : D \to [-\infty, +\infty)$, where D is an open set of \mathbb{C}, is subharmonic if and only if for every open disk B relatively compact in D and for every polynomial $P(z)$ of a complex variable z of degree at most two, the inequality $u(z) \leq \Re(P(z))$ on ∂B implies the inequality $u(z) \leq \Re(P(z))$ on \overline{B}.

In this paper, we generalize this fact to several complex variables. That is to say, we prove that an upper semicontinuous function $u : D \to [-\infty, +\infty)$, where D is an open set of \mathbb{C}^n, is subpluriharmonic if and only if for every open ball B relatively compact in D and for every polynomial $P(z_1, z_2, ..., z_n)$ of n complex variables $z_1, z_2, ..., z_n$ of degree at most two, the inequality $u(z) \leq \Re(P(z))$ on ∂B implies the inequality $u(z) \leq \Re(P(z))$ on \overline{B}, where $z = (z_1, z_2, ..., z_n)$ (see Theorem 3.2).

2. Preliminaries

Let $N \in \mathbb{N}$ and let F denote either the real numbers \mathbb{R} or the complex numbers \mathbb{C}. We denote by $\| \cdot \|$ the Euclidean norm on F^N, that is,

$$\| x \| = \left(\sum_{v=1}^{N} |x_v|^2 \right)^{1/2}$$

for every $x = (x_1, x_2, ..., x_N) \in F^N$. For every $c \in F^N$ and for every $r \in (0, +\infty)$, the set $B(c, r) := \{ x \in F^N \mid \| x - c \| < r \}$
is said to be the open ball of radius \(r \) with center \(c \) in \(\mathbb{F}^N \). For every point \(c \in \mathbb{F}^N \) and for every subset \(E \) of \(\mathbb{F}^N \), the number
\[
\text{dist}(c, E) := \inf \{ \| x - c \| \mid x \in E \}
\]
is said to be the distance from \(c \) to \(E \).

We denote by \(z_1, z_2, \ldots, z_n \) the complex coordinates of \(\mathbb{C}^n \). Let \(N \in \mathbb{N} \) and let \(D \) be an open set of \(\mathbb{C}^n \). A \(C^2 \) function \(u : D \to \mathbb{R} \) is said to be pluriharmonic if
\[
\frac{\partial^2 u}{\partial z_\mu \partial \bar{z}_\nu} = 0
\]
on \(D \) for every \(\mu, \nu = 1, 2, \ldots, n \) (see, for instance, Fritzsche-Grauert [1, p. 318]). An upper semicontinuous function \(u : D \to [-\infty, +\infty) \) is said to be subpluriharmonic if for every relatively compact open set \(G \) of \(D \) and for every pluriharmonic function \(h \) defined near \(\bar{G} \), the inequality \(u \leq h \) on \(\partial G \) implies the inequality \(u \leq h \) on \(\bar{G} \) (cf. Fujita [2, 3]). As is noted in Fujita [2, p. 638] (see also Fujita [3, Proposition 2]), the subpluriharmonic functions on \(D \) exactly coincide with the \((n - 1) \) plurisubharmonic functions on \(D \) in the sense of Hunt-Murray [5, Definition 2.3].

By the second statement of Słodkowski [6, Lemma 4.4], we have the following proposition (see also Sugiyama [8, Proposition 2.1]).

Proposition 2.1 (Słodkowski). Let \(D \) be an open set of \(\mathbb{C}^n \) and let \(u : D \to [-\infty, +\infty) \) be an upper semicontinuous function. If \(u \) is not subpluriharmonic on \(D \), then there exist \(c \in D, r \in (0, \text{dist}(c, \partial D)) \), \(K > 0 \), and a function \(f \) holomorphic near \(\bar{B}(c, R) \) such that \(u(c) = \Re(f(c)) \) and
\[
|Q(z)| \leq M \| z - c \|^2
\]
on \(\bar{B}(c, R) \).

3. Results on Subpluriharmonic Functions

We denote by \(\mathbb{C}[z_1, z_2, \ldots, z_n] \) the algebra of polynomial functions of \(n \) complex variables \(z_1, z_2, \ldots, z_n \) with coefficients in \(\mathbb{C} \). We have the following lemma which refines Proposition 2.1.

Lemma 3.1. Let \(D \) be an open set of \(\mathbb{C}^n \) and let \(u : D \to [-\infty, +\infty) \) be an upper semicontinuous function. If \(u \) is not subpluriharmonic on \(D \), then there exist \(c \in D, r \in (0, \text{dist}(c, \partial D)) \), \(K > 0 \), and \(P \in \mathbb{C}[z_1, z_2, \ldots, z_n] \) with \(\deg P \leq 2 \) such that
\[
u(c) = \Re(P(c)) \quad \text{and} \quad \nu \leq \Re(f) - K \| z - c \|^2
\]
on \(\bar{B}(c, R) \).

Proof. By Proposition 2.1, there exist \(c \in D, R \in (0, \text{dist}(c, \partial D)) \), \(L > 0 \), and a function \(f \) holomorphic near \(\bar{B}(c, R) \) such that \(u(c) = \Re(f(c)) \) and
\[

|Q(z)| \leq M \| z - c \|^2
\]
on \(\bar{B}(c, R) \). Then, we have \(P \in \mathbb{C}[z_1, z_2, \ldots, z_n] \), \(\deg P \leq 2 \), \(f = P + Q \) on \(\bar{B}(c, R) \) and there exists \(M > 0 \) such that
\[
|Q(z)| \leq M \| z - c \|^2
\]
on \(\bar{B}(c, R) \). Take an arbitrary \(K \in (0, L) \). For any \(r \in (0, \min[R, (L - K)/M]) \), we have
\[
\Re(P - K \| z - c \|^2) = \Re(f) - \Re(Q) - K \| z - c \|^2 \\
\geq u + L \| z - c \|^2 - M \| z - c \|^2 - K \| z - c \|^2 = u + (L - K) \| z - c \|^2 \geq u
\]
on \(\bar{B}(c, r) \). On the other hand, we have that
\[
\Re(P(c)) = \Re(f(c)) = u(c).
\]

We have the following theorem, which generalizes Yaukoka [9, Theorem 1] to several complex
variables and also refines the first statement of Slodkowski [6, Lemma 4.4].

Theorem 3.2. Let D be an open set of \mathbb{C}^n and let $u : D \to [-\infty, +\infty)$ be an upper semicontinuous function. Then, the following two conditions are equivalent.

1. u is subpluriharmonic.
2. For every $c \in D$, there exists $R \in (0, \text{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{C}[z_1, z_2, \ldots, z_n]$ with $\deg P \leq 2$, the inequality $u \leq \Re(P)$ on $\overline{B(c, r)}$ implies the inequality $u \leq \Re(P)$ on $B(c, r)$.

Proof. (1) \Rightarrow (2). Since the real part of a holomorphic function is pluriharmonic, the assertion follows.

(2) \Rightarrow (1). Suppose that u is not subpluriharmonic. Take an arbitrary $R > 0$. Then, by Lemma 3.1, there exist $c \in D$, $r \in (0, \min(\text{dist}(c, \partial D)))$, $K > 0$, and $Q \in \mathbb{C}[z_1, z_2, \ldots, z_n]$ with $\deg Q \leq 2$ such that $u(c) = \Re(Q(c))$ and $u \leq \Re(Q) - K\|z - c\|^2$ on $\overline{B(c, r)}$. Then, $P := Q - Kr^2 \in \mathbb{C}[z_1, z_2, \ldots, z_n]$, $\deg P \leq 2$, and $u \leq \Re(Q) - Kr^2 = \Re(P)$ on $\partial B(c, r)$ while $u(c) > \Re(P(c))$, which is a contradiction.

Corollary 3.3 (cf. Yasuoka [9, Theorem 1]). Let D be an open set of \mathbb{C} and let $u : D \to [-\infty, +\infty)$ be an upper semicontinuous function. Then, the following two conditions are equivalent.

1. u is subharmonic.
2. For every $c \in D$, there exists $R \in (0, \text{dist}(c, \partial D))$ such that for every $r \in (0, R]$ and for every $P \in \mathbb{C}[z_1, z_2, \ldots, z_n]$ with $\deg P \leq 2$, the inequality $u \leq \Re(P)$ on $\overline{B(c, r)}$ implies the inequality $u \leq \Re(P)$ on $B(c, r)$.

Remark 3.4. For a related characterization of pseudoconvexity of a domain in \mathbb{C}^n or over \mathbb{C}^n by using polynomial functions of degree at most two, see Sugiyama [7, Theorem 3.1] as well as Yasuoka [9, Theorem 2].

Example 3.6. Let $n \in \mathbb{N}$ and let

$$u(z) := x_1^2 - 2y_1^2 - \sum_{v=2}^{n} |z_v|^2$$

for every $z \in D = \mathbb{C}^n$, where $z_1 = x_1 + iy_1$. Then, u is not subpluriharmonic while u satisfies condition (2)' in Remark 3.5.

Proof. By Fujita [2, Proposition 5], a C^2 function is subpluriharmonic if and only if its complex Hessian matrix has at least one nonnegative eigenvalue at any point. Since

$$\left(\frac{\partial^2 u}{\partial z_{\mu} \partial \overline{z}_v} \right) = \begin{pmatrix} -\frac{1}{2} & -1 & \cdots & 0 \\ -1 & \ddots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \vdots \\ 0 & \cdots & \cdots & -1 \end{pmatrix},$$

the function u is not subpluriharmonic on \mathbb{C}^n. Let G be an arbitrary relatively compact open set of \mathbb{C}^n. Let

$$P(z) := \sum_{v=1}^{n} c_vz_v + d,$$

where $c_1, c_2, \ldots, c_n, d \in \mathbb{C}$, and assume that $u \leq \Re(P)$ on ∂G. Let

$$\mu : \mathbb{C}^n \to \mathbb{C}^n, \quad z \mapsto \left(x_1 + \frac{i}{\sqrt{2}} y_1, z_2, \ldots, z_n \right),$$

which is an \Re-linear isomorphism of \mathbb{C}^n. Since
We have the following characterization of the subharmonic functions of several real variables, which resembles Theorem 3.2.

Theorem 4.2. Let \(D \) be an open set of \(\mathbb{R}^N \) and let \(u : D \to [-\infty, +\infty) \) be an upper semicontinuous function. Then, the following two conditions are equivalent.

(1) \(u \) is subharmonic.

(2) For every \(c \in D \), there exists \(R \in (0, \text{dist}(c, \partial D)) \) such that for every \(r \in (0, R] \) and for every \(P \in \mathbb{R}[x_1, x_2, \ldots, x_N] \) with \(\deg P \leq 2 \) which is harmonic on \(\mathbb{R}^N \), the inequality \(u \leq P \) on \(\partial B(c, r) \) implies the inequality \(u \leq P \) on \(B(c, r) \).

Proof. (1) \(\rightarrow \) (2). The assertion is clear.

(2) \(\rightarrow \) (1). Suppose that \(u \) is not subharmonic. Take an arbitrary \(R > 0 \). Then, by Lemma 4.1, there exist \(c \in D \),

\[r \in (0, \min\{R, \text{dist}(c, \partial D)\}) \]

and \(Q \in \mathbb{R}[x_1, x_2, \ldots, x_N] \) with \(\deg Q \leq 2 \) such that \(u(c) = Q(c) \), \(\Delta Q < 0 \), and \(u \leq Q \) on \(\overline{B(c, r)} \).

Then, \(\Delta Q = -2NK \) on \(\mathbb{R}^N \) for some constant \(K > 0 \). Let \(P := Q + K|\|x - c\|^2 - r^2| \).

Then, \(P \in \mathbb{R}[x_1, x_2, \ldots, x_N] \), \(\deg P \leq 2 \), \(\Delta P = 0 \) on \(\mathbb{R}^n \), and \(P = Q \geq u \) on \(\partial B(c, r) \), although

\[P(c) = Q(c) - Kr^2 = u(c) - Kr^2 < u(c) \],

which is a contradiction.

Remark 4.3. As Example 4.4 below shows, if \(N \geq 2 \), then we cannot replace condition (2) by the following condition (2)' in Theorem 4.2.

(2)' For every \(c \in D \), there exists \(R \in (0, \text{dist}(c, \partial D)) \) such that for every \(r \in (0, R] \) and for every \(P \in \mathbb{R}[x_1, x_2, \ldots, x_N] \) with \(\deg P \leq 1 \), the inequality \(u \leq P \) on \(\partial B(c, r) \) implies the inequality \(u \leq P \) on \(B(c, r) \).

Example 4.4. Let \(N \geq 2 \) and let

\[u(x) := x_1^2 - 2x_2^2 \]
for every \(x = (x_1, x_2, ..., x_N) \in D = \mathbb{R}^N \). Then, \(u \) is not subharmonic while \(u \) satisfies condition (2)' in Remark 4.3.

Proof. Since \(\Delta u = -2 \) on \(\mathbb{R}^N \), the function \(u \) is not subharmonic on \(\mathbb{R}^N \) (see, for instance, Hörmander [4, p. 146]). Take an arbitrary relatively compact open set \(G \) of \(\mathbb{R}^N \) and arbitrary \(a_1, a_2, ..., a_N, b \in \mathbb{R} \). Let

\[
P(x) := \sum_{k=1}^{N} a_k x_k + b
\]

and assume that \(u \leq P \) on \(\partial G \). Let

\[
\mu : \mathbb{R}^N \to \mathbb{R}^N, \quad x \mapsto \left(x_1, \frac{x_2}{\sqrt{2}}, x_3, ..., x_N \right),
\]

which is an \(\mathbb{R} \)-linear isomorphism of \(\mathbb{R}^N \). Since \((u \circ \mu)(x) = x_1^2 - x_2^2\), the function \(u \circ \mu \) is harmonic on \(\mathbb{R}^N \) and therefore is subharmonic on \(\mathbb{R}^N \).

Since the function

\[
(P \circ \mu)(x) = a_1 x_1 + \frac{a_2}{\sqrt{2}} x_2 + \sum_{k=3}^{N} a_k x_k + b
\]

is harmonic on \(\mathbb{R}^N \) and satisfies \(u \circ \mu \leq P \circ \mu \) on \(\mu^{-1}(\partial G) = \partial (\mu^{-1}(G)) \), we have that \(u \circ \mu \leq P \circ \mu \) on \(\mu^{-1}(G) = \mu^{-1}(G) \). It follows that \(u \leq P \) on \(G \) and therefore condition (2)' in Remark 4.3 is satisfied.

\[\blacksquare\]

Acknowledgment. The first author is partially supported by JSPS KAKENHI Grant Number JP17K05301.

References

