Na⁺-Cl⁻ cotransporter-mediated chloride uptake contributes to hypertension and renal damage in aldosterone-infused rats

Takahiro Yamauchi¹, Shigehiro Doi¹*, Ayumu Nakashima¹, Toshiki Doi¹, Eisei Sohara², Shinichi Uchida², Takao Masaki¹

¹ Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
² Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan

Running head: Chloride and aldosterone nephropathy

* Corresponding author
Shigehiro Doi MD, PhD
Department of Nephrology, Hiroshima University Hospital
Address: 1-2-3 Kasumi Minami-ward, Hiroshima 734-8551, Japan
Telephone number: +81 82 257 1506 Fax number: +81 82 257 1508
E-mail address: sdoi@hiroshima-u.ac.jp

Authors’ contributions
Conceived and designed the experiments: SD and TM. Performed the experiments: TY and TD.
Analyzed the data: AN. Contributed reagents/materials/analysis tools: SU, ES, and SD. Wrote the paper: TY, SD, and TM.
Abstract

Recently, in addition to epithelial sodium channel alpha-subunit (αENaC), the thiazide-sensitive sodium-chloride cotransporter (NCC) and pendrin, also known as sodium-independent chloride/iodide transporter, were reported to be activated by aldosterone. Here, we investigated whether chloride (Cl⁻) is responsible for hypertension, inflammation, and renal damage in aldosterone-infused rats. Following left nephrectomy, 8-week-old male Sprague-Dawley rats were allocated into four groups: 1) drinking 1.0% sodium chloride solution with aldosterone infusion (Aldo/NaCl rats); 2) drinking 1.44% sodium bicarbonate solution with aldosterone infusion (Aldo/NaHCO₃ rats); 3) drinking distilled water with aldosterone infusion (Aldo/water rats); and 4) drinking distilled water without aldosterone infusion (sham rats). Additionally, hemi-nephrectomized rats with aldosterone infusion were fed a 0.26% NaCl diet (control); 8.0% NaCl diet (high-Na/high-Cl); or a 4.0% NaCl 6.67% sodium citrate diet (high-Na/half-Cl). Last, Aldo/NaCl rats were treated with or without hydrochlorothiazide. Blood pressure in the Aldo/NaCl rats was significantly higher than in the Aldo/NaHCO₃ rats, which was associated with the increased expression of NCC. Expression of markers of inflammation (CD3, CD68, interleukin-17A) and fibrosis (α-smooth muscle actin, collagen 1) were also increased in Aldo/NaCl rats. Similarly, aldosterone-infused rats fed a high-Na/half-Cl diet had lower blood pressure than those fed a high-Na/high-Cl diet, with a reduction of phosphorylated-NCC, but not αENaC and pendrin. NCC inhibition with hydrochlorothiazide attenuated interleukin-17A protein expression along with the phosphorylation of NCC in Aldo/NaCl rats. These findings suggest that NCC-mediated Cl⁻ uptake plays important roles in the development of aldosterone-induced hypertension and renal injury.
Keywords: chloride; sodium-chloride cotransporter; aldosterone; hypertension; inflammation
Introduction

The kidneys retain the balance between salt and water within body fluid, playing an important role in maintaining blood pressure. Excessive dietary salt intake is a well-known major factor for the induction of hypertension. Guyton et al. first proposed that a decrease in renal excretion of salt leads to fluid retention, resulting in hypertension through an increase in cardiac output (15). Several studies have demonstrated that salt susceptibility to hypertension, also called ‘salt-sensitivity’, is different in each person (8), and that salt-sensitive hypertension is caused by several factors, including activation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and hyperinsulinemia (3, 17, 28). However, the precise mechanisms behind salt-sensitivity remain unclear.

A recent study suggested that dietary salt per se accelerates sodium (Na+) reabsorption through RAS-related C3 botulinum toxin substrate 1 activation in the salt-sensitive phenotype (31). Dietary salt comprises both Na+ and chloride (Cl-) ions, and their excretion is regulated at distal nephrons, which consists of a distal tubule and a collecting duct. Although Na+ is considered to be a major contributor to hypertension, previous studies suggest that Cl−, rather than Na+, is essential for maintaining blood pressure and volume retention (6, 42). Studies also report that selective Cl− loading causes vasocontraction and microangiopathy in spontaneously hypertensive rats (30, 35). In contrast, oral intake of sodium bicarbonate (NaHCO₃) did not elevate blood pressure in rats treated with deoxycorticosterone acetate (DOCA) (45). These findings raise the possibility that the dual roles of NaCl in the pathogenesis of salt-sensitive hypertension may be explained by Cl− reabsorption at the distal nephron.

Among the various models of salt-sensitive hypertension, aldosterone/salt-treated animals exhibit infiltration of the kidneys by numerous immune cells, including lymphocytes and
macrophages (4). A previous study found that administration of mycophenolate mofetil (MMF), an immunosuppressant, ameliorated aldosterone/salt-induced hypertension (5). We also reported that another immunosuppressive agent, mizoribine, attenuated not only renal inflammation but also hypertension in a rat aldosterone/NaCl model (10). These findings suggest that aldosterone/NaCl-induced inflammation may be implicated in the development of hypertension (13). Notably, recent studies have demonstrated that excess intake of NaCl causes inflammation through upregulation of interleukin-17A (IL-17A) derived from Th17 cells (1, 23). However, the role of Cl⁻ on renal inflammation and hypertension in aldosterone-infused rats remains unclear. In this study, we investigated whether Cl⁻ is responsible for the observed hypertension, inflammation, and renal damage in aldosterone-infused rats. We found that administration of NaHCO₃ solution resulted in less renal inflammation, fibrosis, and hypertension in aldosterone-infused rats compared with administration of NaCl. Next, we show that a 4.0% NaCl 6.67% sodium citrate (high-Na/half-Cl) diet had less hypertension compared with an 8.0% NaCl (high-Na/high-Cl) diet in aldosterone-infused rats. Last, Na⁺-Cl⁻ cotransporter (NCC) inhibition with hydrochlorothiazide (HCTZ) attenuated IL-17A protein expression in aldosterone/NaCl-infused rats. Both Cl⁻ restriction and HCTZ administration attenuated protein expression of functional phosphorylated NCC in the membrane fraction. These results suggest that NCC-mediated Cl⁻ uptake plays important roles in the development of aldosterone-induced hypertension and renal injury.

Materials and methods

Ethical considerations

All experiments were carried out in accordance with recommendations for the Care and Use of
Laboratory Animals in the National Institutes of Health Guidelines. The Institutional Animal Care and Use Committee of Hiroshima University (Hiroshima, Japan) approved the experimental protocols (Permit Number: A10-52). All efforts were taken to minimize pain and distress to animals.

Surgical procedures

Eight-week-old male Sprague-Dawley rats (290–320 g) were purchased from Charles River Laboratories Japan (Yokohama, Japan). Rats underwent left nephrectomy under anesthesia with an intraperitoneal injection of sodium pentobarbital or a medetomidine-midazolam-butorphanol combination. Aldosterone (Sigma-Aldrich, St. Louis, MO) was dissolved in distilled water containing dimethyl sulfoxide, and the solution was administered to rats using ALZET™ osmotic pumps (Durect, Cupertino, CA) (10). Pumps were subcutaneously implanted in rats, ensuring constant aldosterone infusion throughout the six-week study period.

Experimental protocol

Experiment 1: Following surgery, rats were allocated into four groups: 1) drinking 1.0% NaCl solution with aldosterone infusion (Aldo/NaCl rats, n = 8); 2) drinking 1.44% NaHCO₃ solution with aldosterone infusion (Aldo/NaHCO₃ rats, n = 8); 3) drinking distilled water with aldosterone infusion (Aldo/water rats, n = 7); and 4) drinking distilled water without aldosterone infusion (sham rats, n = 8). The concentration of Na⁺ in solutions was adjusted to match equimolecular amounts between Aldo/NaCl rats and Aldo/NaHCO₃ rats. The amount of NaCl in the standard rat chow was 0.30% (Oriental Yeast Co., Ltd, Tokyo, Japan). At the end of the fifth week, rats were killed by cardiac puncture under deep anesthesia.
Experiment 2: Aldosterone-infused, hemi-nephrectomized rats were divided into three groups: 1) 0.26% NaCl (0.10% Na/0.16% Cl) diet (control rats, n = 8); 2) 8.0% NaCl (3.14% Na/4.85% Cl) diet (high-Na/high-Cl rats, n = 8); and 3) 4.0% NaCl 6.67% sodium citrate (3.14% Na/2.43% Cl) diet (high-Na/half-Cl rats, n = 8) (Table 1). The formula diets were provided by Research Diets, Inc. (New Brunswick, NJ). At the end of the sixth week, rats were killed by cardiac puncture under deep anesthesia.

Experiment 3: We inhibited NCC by administering HCTZ (Sigma-Aldrich). Aldo/NaCl rats were generated as above. At two weeks into the study, Aldo/NaCl rats were divided into two groups. Distilled water (vehicle-treated rats, n = 4) or 25 mg/kg/day HCTZ in distilled water (HCTZ-treated rats, n = 5) was administrated by oral gavage. At the end of the fifth week, rats were killed by cardiac puncture under deep anesthesia.

Measurement of biological parameters
Blood pressure was measured weekly (Experiment 1 and 3) or biweekly (Experiment 2) using the tail cuff method (Softron, Tokyo, Japan). Twenty-four-hour urine samples were collected using metabolic cages (Natsume, Tokyo, Japan). Rats were kept in the metabolic cages for one day of acclimatization prior to starting urine collection. At the end of the fifth (Experiment 1 and 3) or the sixth (Experiment 2) week, blood samples were taken by cardiac puncture. Measurement of blood and urine samples was outsourced to SRL Inc. (Tokyo, Japan). Blood pH was analyzed by I-STAT (chem 8+ cartridge; Abbott Point of Care, Princeton, NJ).

Histological examination
Renal tissue samples were processed to formalin-fixed, paraffin-embedded sections. Two-μm-
thick paraffin sections were prepared for light microscopy and stained with hematoxylin and
eosin (H-E), Masson’s trichrome (M-T), and periodic acid-Schiff (PAS). Twenty glomeruli under
a high-power field (original magnification ×200) were selected from sections of rat kidneys. All
microscopic images were captured using Lumina Vision 2.20 (Mitani, Fukui, Japan). Glomerular
injury was evaluated using a glomerulosclerosis scoring system reported previously (24). Briefly,
glomeruli stained with PAS were graded on a scale of 0 to 4: 0, normal; 1, involvement of 1%–
25% of glomerular tufts; 2, involvement of 26%–50% of glomerular tufts; 3, involvement of
51%–75% of glomerular tufts; 4, involvement of 75%–100% of glomerular tufts. The scorer did
not know the treatment group when scoring.

Immunohistochemistry

Paraffin sections (4 μm thick) were subjected to immunohistochemical staining as previously
described (10, 38). Primary antibodies used were: mouse monoclonal anti-human CD3 antibody
(1:5000; Dako, Glostrup, Denmark), mouse monoclonal anti-human CD68 antibody (1:2000;
AbD Serotec, Oxford, UK), mouse monoclonal anti-alpha-smooth muscle actin (αSMA)
antibody (1:10000; Sigma-Aldrich), and rabbit polyclonal anti-collagen 1 antibody (1:2000;
Abcam, Cambridge, UK). CD3, CD68, and αSMA were detected using the Envision System
(Dako). Collagen 1 was stained using the avidin-biotin complex method. To detect death cells in
the kidney, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was
performed using the DeadEnd Colorimetric TUNEL System (Promega, Madison, WI), according
to the manufacturer’s instructions.

The CD3-, CD68-, and TUNEL-positive cells were counted in 10 selected fields of the
cortex (×100) that were captured using a Lumina Vision 2.20 (Mitani). αSMA- and collagen 1-
positively stained areas were assessed in five selected fields of the cortex (×40) and those of the
corticomedullary junction (×40), were also captured as above. Quantitative analysis was
performed using Image J software (National Institutes of Health, Bethesda, MD).

Immunoblot assays

To extract protein from whole tissue, frozen renal tissue samples were lysed in cell lysis buffer
(Cell Signaling Technology, Danvers, MA) and homogenized for 40 s using an ultrasonic
homogenizer (VP-050; Taitec, Saitama, Japan) at 20% power. Soluble protein was additionally
sonicated for 20 s. Protein from the membrane fraction was extracted using a Minute™ plasma
membrane protein isolation kit (Invent Biotechnologies, Plymouth, MN). The concentration of
the protein solution was measured using a Pierce™ BCA protein assay kit (Thermo Fisher
Scientific, Rockford, IL), and then the concentration was adjusted uniformly. An equal amount of
each sample was analyzed by immunoblot analysis, as previously described (10, 38).

The primary antibodies used were: rabbit polyclonal anti-epithelial sodium channel-α
antibody (1:2500; StressMarq Biosciences, Victoria, BC, Canada); rabbit polyclonal anti-
slc26A4 antibody (1:4000; Bioss, Woburn, MA); rabbit polyclonal anti-thiazide-sensitive Na⁺-
Cl⁻ cotransporter antibody (1:2000; EMD Millipore, Darmstadt, Germany); mouse monoclonal
anti-αSMA antibody (1:5000; Sigma-Aldrich); and mouse monoclonal anti-IL-17A antibody
(1:2000; Novus Biologicals, Littleton, CO). Mouse polyclonal anti-alpha-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) antibody (1:10000; Sigma-Aldrich) was used as a reference
standard for protein derived from whole renal lysate. Rabbit polyclonal anti-phosphorylated-
NCC antibodies, specifically anti-Thr53-NCC (1:2000), anti-Thr58-NCC (1:1000), and anti-
Per71-NCC (1:2000) were as described previously (7). The secondary antibodies were biotin-
conjugated goat anti-rabbit immunoglobulin G (H+L) antibody (Thermo Fisher Scientific) and HRP-conjugated goat anti-mouse immunoglobulin G (H+L) antibody (Thermo Fisher Scientific). Signals were detected using the SuperSignal West Dura and Pico system (Thermo Fisher Scientific). The intensity of each protein band was measured using Image J software (National Institutes of Health).

Statistical analysis

Results for parametric data are expressed as the means ± standard deviation (SD) for each group of rats. Statistical analysis was performed using SPSS (version 22.0; IBM, Armonk, NY). Comparisons between two groups were tested using Student’s t-test, while those among groups were tested by analysis of variance (ANOVA) followed by Tukey’s post hoc test. The glomerulosclerosis score was analyzed by Kruskal-Wallis analysis followed by the Steel-Dwass test. The general linear model was applied for comparisons of blood pressure values and urinary samples at each time point and each group. Values of \(P < 0.05 \) were considered to be statistically significant.

Results

\textit{NaCl, but not NaHCO_3, induced hypertension in aldosterone-infused rats}

We first evaluated the effect of NaCl and NaHCO_3 on the physical characteristics of aldosterone-infused rats. At the fifth week, Aldo/NaCl rats demonstrated lower body weights compared with Aldo/NaHCO_3 rats. Moreover, severe renal hypertrophy was observed in Aldo/NaCl rats. Although the serum Na\(^+\) concentration did not show any significant differences among the groups, serum levels of potassium (K\(^+\)) and Cl\(^-\) were lower in Aldo/NaCl and Aldo/NaHCO_3 rats.
than in sham and Aldo/water rats (Table 2).

Systolic blood pressure values in Aldo/NaCl rats gradually rose during the observation period. From week 2, blood pressure values showed a significant increase in the Aldo/NaCl rats compared with the Aldo/NaHCO₃ rats (Fig. 1A). The urinary excretion of Na⁺ and Cl⁻ was increased in Aldo/NaCl rats, however K⁺ did not differ. Urinary protein excretion was also significantly increased in Aldo/NaCl rats (Fig. 1B).

Expression of NCC and αENaC, but not pendrin, was increased in Aldo/NaCl rats compared with Aldo/NaHCO₃ rats

Although aldosterone is known to upregulate the expression of NCC, αENaC, and pendrin, the effect of NaHCO₃ on expression of these factors in aldosterone-infused rats remains unclear. We extracted proteins located in the membrane fraction from renal samples and adjusted the protein concentration of each sample. Expression levels of transporter proteins from the membrane lysates were examined using immunoblot analysis. Total-NCC expression in membrane lysates was significantly increased in Aldo/NaCl rats compared with Aldo/NaHCO₃ rats, while αENaC and pendrin expression did not differ significantly between the two groups (Fig. 2A and B). To evaluate the activated form of NCC, we examined expression levels of phosphorylated-NCC proteins, specifically T53-NCC, T58-NCC, and P71-NCC. The expression of phosphorylated-NCC proteins were higher in Aldo/NaCl rats than in Aldo/NaHCO₃ and Aldo/water rats (Fig. 2C and D).

Number of Cell Death and expression of fibrotic markers were increased in the kidneys of Aldo/NaCl rats compared with Aldo/NaHCO₃ rats
To evaluate renal injury, formalin-fixed, paraffin-embedded tissues were processed for histological analysis. By H-E staining, Aldo/NaCl rats displayed an increase in renal tubular dilation and immune cell infiltration into the tubulointerstitium compared with Aldo/NaHCO$_3$ and Aldo/water rats (Fig. 3A). Kidneys from Aldo/NaCl rats showed large areas stained with aniline blue after M-T staining, which indicated fibrotic tissue (Fig. 3A). Some glomeruli from Aldo/NaCl rats demonstrated marked glomerulosclerosis and adhesions to the Bowman’s capsule along with focal tubulointerstitial injury, such as tubular dilation and protein casts (Fig. 3A). Conversely, Aldo/NaHCO$_3$ and Aldo/water rats showed few sclerotic changes (Fig. 3B).

Immunohistochemical staining was performed to investigate renal injury more closely. TUNEL staining was performed to determine cell death. TUNEL-positive cells were observed mainly in the tubulointerstitium (Fig. 3C). Kidneys from Aldo/NaCl rats had more TUNEL-positive cells than Aldo/NaHCO$_3$ rats (Fig. 3D). To assess the effects of NaCl and NaHCO$_3$ on fibrosis in aldosterone-infused rats, the expression of αSMA and collagen 1 were used as markers of myofibroblasts and extracellular matrix protein, respectively. While increased areas of fibrosis were observed in the renal tubulointerstitium of Aldo/NaCl rats, there were few fibrotic changes in Aldo/NaHCO$_3$ rats (Fig. 3C and D). Protein expression of αSMA was also examined by immunoblot assay and the findings were compatible with the results from immunohistochemical staining (Fig. 3E and F).

Renal inflammation was increased in Aldo/NaCl rats compared with Aldo/NaHCO$_3$ rats

T cell-mediated inflammation and macrophage migration into the kidneys are dominant pathophysiological features in the development of salt-sensitive hypertension. It has recently been reported that differentiation of naïve T cells into T helper 17 (Th17) cells is central to
inflammation in the salt-sensitive state (18). Therefore, we performed immunohistochemical
staining for CD3, a maker of T lymphocytes, and CD68, a marker of macrophages and
monocytes. Aldo/NaCl rats demonstrated numerous CD3- and CD68-positive cells infiltrating
the tubulointerstitium of the kidneys (Fig. 4A and B). Expression of IL-17A was also upregulated
in Aldo/NaCl rats, however IL-17A expression in the Aldo/NaHCO₃ rats did not differ from the
Aldo/water rats (Fig. 4C and D).

Dietary Cl⁻ restriction suppressed hypertension and inhibited NCC phosphorylation in
aldosterone-infused rats with Na⁺ overload.

To confirm the effect of Cl⁻ on salt-sensitive hypertension under conditions of equalized Na⁺
overload, we measured blood pressure and examined the expression of NCC, αENaC, and
pendrin in rats on control, high-Na/high-Cl, and high-Na/half-Cl diets. During the observation
period, dietary consumption and body weight were not significantly different between the high-
Na/high-Cl and high-Na/half-Cl groups (Fig. 5A and Table 3). At the third week, urinary
excretion of Na⁺ did not differ between the high-Na/high-Cl and high-Na/half-Cl rats, whereas
urinary Cl⁻ was increased in high-Na/high-Cl rats compared with high-Na/half-Cl rats (Table 3).
Similar to Aldo/NaCl rats, blood pressure of high-Na/high-Cl rats was higher than that of high-
Na/half-Cl rats (Fig. 5B). By immunoblot analysis, phosphorylated-NCC expression in
membrane lysates were significantly upregulated in high-Na/high-Cl rats compared with high-
Na/half-Cl rats (Fig. 5C and D).

HCTZ alleviated hypertension and attenuated αSMA and IL-17A expression
To determine the role of NCC in Aldo/NaCl rats, we investigated the effect of HCTZ on blood pressure and renal inflammation and damage. Oral administration of HCTZ, a pharmacological inhibitor of NCC, at a dose of 25 mg/kg/day for four weeks suppressed the rise in blood pressure in Aldo/NaCl rats, along with reduced urinary protein excretion (Fig. 6A and B). Immunoblot assays also revealed that, in addition to αSMA, IL-17A decreased in HCTZ-treated rats compared with vehicle-treated rats (Fig. 6C).

HCTZ suppressed phosphorylated-NCC expression in the membrane fraction

To identify the inhibitory effect of NCC on transporters at the distal nephron in Aldo/NaCl rats, we investigated the protein expression of NCC, αENaC, and pendrin between vehicle-treated and HCTZ-treated rats. Although expression levels of total- and phosphorylated-NCC in membrane lysates were significantly decreased in HCTZ-treated rats, those of αENaC and pendrin did not change, irrespective of HCTZ treatment (Fig. 7A and B).

Discussion

In this study, we found that aldosterone-induced salt-sensitive hypertension increased in rats administered NaCl, but not NaHCO3, in their drinking water which was accompanied by significantly increased expression of NCC. Administration of NaCl, but not NaHCO3, increased not only renal fibrosis but also infiltration of inflammatory cells along with upregulated expression of IL-17A in aldosterone-infused rats. Similarly, even with the equimolar Na+ overloading, a high-Na/high-Cl diet showed higher blood pressure than the high-Na/half-Cl diet in aldosterone-infused rats. High-Na/high-Cl diet upregulated expression of phosphorylated NCC, whereas the high-Na/half-Cl diet did not. Last, NCC inhibition with HCTZ improved
hypertension, renal fibrosis, and inflammation in Aldo/NaCl rats. These findings suggest that NCC-mediated Cl⁻ reabsorption plays a pivotal role in the development of hypertension and renal damage in this rat model of aldosterone-induced salt-sensitive hypertension.

We found that Aldo/NaCl treatment induced elevated blood pressure and increased the expression of NCC and pendrin compared with Aldo/water treatment. Among several inducers of salt-sensitive hypertension, aldosterone is well-known to increase renal NaCl reabsorption through activating αENaC and NCC (7, 9, 20). Thus, exogenous aldosterone infusion is regularly used for animal models of salt-sensitive hypertension. Recently, DOCA was reported to increase expression levels of pendrin in mice (27, 41). Previous studies have demonstrated that pendrin enhances γENaC function, possibly through its ability to keep channels open and alter subcellular protein distribution (25), and that elevated blood pressure is not observed in pendrin-null mice with DOCA/NaCl treatment (41). In contrast, other studies have reported that specific deletion of the pendrin gene did not attenuate salt-sensitive hypertension (32, 44). Therefore, the role of pendrin on the progression of hypertension remains controversial. In the current study, we found that in rats that drank NaHCO₃, or had the high-Na/half-Cl diet or received HCTZ treatment, salt-sensitive hypertension improved without changes in pendrin expression. Taken together, the results suggest that pendrin is not likely to be responsible for Aldo/NaCl-induced hypertension.

Aldo/NaHCO₃ and high-Na/half-Cl rats did not show significant elevations in blood pressure nor did they show upregulation of NCC, indicating that, in addition to aldosterone, Cl⁻ is essential for increased salt-sensitivity through activation of NCC. We also observed that inhibition of NCC with oral administration of HCTZ attenuated not only hypertension and renal damage, including proteinuria, interstitial fibrosis and inflammation, in Aldo/NaCl rats but also
reduced total- and phosphorylated-NCC expression. NCC phosphorylation is induced by various
stimuli, including hypokalemia, aldosterone, angiotensin, hyperinsulinemia, and sympathetic
stimulation, which are all known to contribute to salt sensitivity (22, 34, 36, 37, 39). Our data
indicate that NCC-mediated Cl- reabsorption plays an important role in the development of salt-
sensitive hypertension.

Previous research has shown that NCC knockout mice upregulate not only γENaC
expression but also pendrin expression (14). Additionally, aldosterone-induced alkalosis leads to
enhanced expression of pendrin (29, 41). These findings suggest that either γENaC or pendrin
are complementarily overexpressed to retain NaCl as well as to maintain acid-base homeostasis
during blocking of the NCC function (32). However, in the current study, NCC inhibition with
HCTZ was not compensated for by increased expression of γENaC (data not shown) and
pendrin. One possible explanation for this finding is that the biological half-life of oral HCTZ is
only 1.7 and 13.1 hours for the α- and β-phases, respectively, indicating that HCTZ
administration only has a temporary inhibitory effect on NCC, unlike that observed in knockout
animals (2). Another possible mechanism is that γENaC and pendrin might have already been
upregulated in Aldo/NaCl rats. In either case, our data suggest that γENaC and pendrin do not
confer the ability to compensate for NCC.

Previous studies found that administration of DOCA or angiotensin II could not induce
hypertension in rodents lacking T and B lymphocytes (16, 33). It is also reported that
immunosuppressants, such as TNF-α inhibitors, MMF or mizoribine, prevent hypertension in
salt-sensitive animal models (5, 10, 11). Importantly, recent studies have clarified that NaCl
promotes autoimmune disease through Th17 (18), and that deletion of IL-17A ameliorates
hypertension and renal injury in DOCA/NaCl rats (1). These findings suggest that T cell-driven
inflammation is involved in aldosterone-induced hypertension. In the current study, the protein expression level of IL-17A was suppressed in Aldo/NaHCO₃ rats and Aldo/NaCl rats with HCTZ treatment. Taken together, it appears that Cl⁻ plays an essential role in the development of salt-induced inflammation.

Dysregulated Th17 cells are regarded as a therapeutic target not only for salt-sensitive hypertension but also inflammatory renal diseases, including lupus nephritis, IgA nephropathy, crescentic glomerulonephritis, and post-transplant rejection (12, 19, 26, 40). Chronic inflammation is recognized to cause subsequent fibrosis through production of transforming growth factor-β1 (21). A recent study reported that T cells are required for both collagen deposition and hypertension (43). Anti-inflammatory therapies suppress renal fibrosis, suggesting that inhibition of T cells, at least in part, has anti-fibrotic effects. These findings raise the possibility that Cl⁻-mediated inflammation contributes to renal fibrosis as well as salt-sensitive hypertension.

In conclusion, aldosterone-infused rats with NaCl in their drinking water had increased hypertension and renal inflammation compared with NaHCO₃-treated controls. Reduction of dietary Cl⁻ also decreased the development of hypertension as well as NCC activation, even with equimolar Na⁺ overloading. As activation of T lymphocytes is known to participate in the development of both hypertension and renal damage, Cl⁻ overload may also be involved in this critical process. HCTZ treatment was found to ameliorate blood pressure elevation and renal damage through the reduction of NCC expression. These results suggest that NCC-mediated Cl⁻ reabsorption plays an important role in the pathogenesis of salt-sensitive hypertension.

Acknowledgments
None.

Grants
This work was supported by the Tsuchiya Memorial Medical Foundation.

Disclosures
The authors declare no actual or potential conflicts of interest.

References

5. Boesen EI, Williams DL, Pollock JS, and Pollock DM. Immunosuppression with mycophenolate mofetil attenuates the development of hypertension and albuminuria in

Figure captions

Fig. 1. Sodium chloride increased aldosterone-induced salt-sensitive hypertension and renal dysfunction.

(A) Line graph showing sequential blood pressure values measured once a week during the observation period. (B) Graphs indicate urinary excretion of Na\(^+\), Cl\(^-\), K\(^+\), and protein at week 0,
2, and 4 respectively. Na⁺: sodium. Cl⁻: chloride. K⁺: potassium. Sham rats (sham): rats given water after left nephrectomy. Aldo/water rats (Aldo/water): hemi-nephrectomized rats drinking distilled water with aldosterone infusion. Aldo/NaHCO3 rats (Aldo/NaHCO3): hemi-nephrectomized rats drinking 1.44% NaHCO3 with aldosterone infusion. Aldo/NaCl rats (Aldo/NaCl): hemi-nephrectomized rats drinking 1.0% NaCl with aldosterone infusion. Values are the mean ± SD. Blood pressure data and urinary data at each time point were analyzed using the general linear model, and statistical differences compared with Aldo/NaHCO3 rats are indicated as § \(P < 0.05 \).

Fig. 2. Membranous expression of the Na⁺-Cl⁻ transporter was enhanced in aldosterone and sodium chloride-treated rats.

(A) Representative immunoblot assay showing protein expression of transporters located at the aldosterone-sensitive distal nephron. (B) Quantification of protein expression of αENaC, pendrin, and total-NCC. (C) Representative immunoblot assay shows membrane expression of phosphorylated NCC, specifically T53, T58, and P71-NCC. (D) Quantification of protein expressions of phosphorylated NCC. αENaC: epithelial sodium channel alpha-subunit. NCC: thiazide-sensitive Na⁺-Cl⁻ cotransporter. Sham rats (sham): rats given water after left nephrectomy. Aldo/water rats (Aldo/water): hemi-nephrectomized rats drinking distilled water with aldosterone infusion. Aldo/NaHCO3 rats (Aldo/NaHCO3): hemi-nephrectomized rats drinking 1.44% NaHCO3 with aldosterone infusion. Aldo/NaCl rats (Aldo/NaCl): hemi-nephrectomized rats drinking 1.0% NaCl with aldosterone infusion. Values are the mean ± SD. Data were analyzed with ANOVA followed by Tukey’s test. Statistical differences are indicated as * \(P < 0.05 \), ** \(P < 0.01 \).
Fig. 3. Sodium chloride-treated rats showed increased aldosterone-induced renal injury.

(A) Representative images of hematoxylin and eosin (H-E), Masson’s trichrome (M-T), and periodic acid-Schiff (PAS) staining showing typical morphological changes in renal tissue. (B) Glomerulosclerosis scores. (C) Representative images of immunohistochemical staining showing terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, collagen 1, and alpha-smooth muscle actin (αSMA). (D) Quantification of TUNEL-positive cells, and positive areas of collagen 1 and αSMA. (E) Representative immunoblot assay showing protein expression levels of αSMA in sham rats, Aldo/water rats, Aldo/NaCl rats, and Aldo/NaHCO₃ rats. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. Graph shows relative protein expression of αSMA. Sham rats (sham): rats given water after left nephrectomy. Aldo/water rats (Aldo/water): hemi-nephrectomized rats drinking distilled water with aldosterone infusion. Aldo/NaHCO₃ rats (Aldo/NaHCO₃): hemi-nephrectomized rats drinking 1.44% NaHCO₃ with aldosterone infusion. Aldo/NaCl rats (Aldo/NaCl): hemi-nephrectomized rats drinking 1.0% NaCl with aldosterone infusion. Values are the mean ± SD. Parametric data were analyzed with ANOVA followed by Tukey’s test. Glomerulosclerosis score was analyzed with Kruskal-Wallis analysis followed by the Steel-Dwass test. Statistical differences are indicated as * P < 0.05, ** P < 0.01.

Fig. 4. Macrophages and T lymphocytes are associated with inflammation in aldosterone-induced hypertensive rats.

(A) Typical images of immunohistochemical staining for T lymphocytes (CD3-positive cells) and macrophages (CD68-positive cells) showing inflammatory cell infiltration of kidneys of
sham rats, Aldo/water rats, Aldo/NaCl rats, and Aldo/NaHCO₃ rats. (B) Quantification of CD3- and CD68-positive cells. (C) Immunoblot assays showing protein expression of interleukin 17A (IL-17A). (D) Quantification of protein expression of IL-17A. Sham rats (sham): rats given water after left nephrectomy. Aldo/water rats (Aldo/water): hemi-nephrectomized rats drinking distilled water with aldosterone infusion. Aldo/NaHCO₃ rats (Aldo/NaHCO₃): heminephrectomized rats drinking 1.44% NaHCO₃ with aldosterone infusion. Aldo/NaCl rats (Aldo/NaCl): hemi-nephrectomized rats drinking 1.0% NaCl with aldosterone infusion. Values are the mean ± SD. Data were analyzed with ANOVA followed with Tukey’s test. Statistical differences are indicated as * P < 0.05, ** P < 0.01.

Fig. 5. Reduction of Cl⁻ intake prevented hypertension and inhibited protein expression of the Na⁺-Cl⁻ transporter.

(A) Line graph indicates weekly dietary intake of control, high-Na/high-Cl, and high-Na/half-Cl groups during the observation period (n=8 for each group). (B) Line graph showing sequential blood pressure values measured biweekly. (C) Immunoblot assay showing membrane expression of αENaC, pendrin, total-NCC, T53, T58, and P71-NCC among control rats, high-Na/high-Cl rats, and high-Na/half-Cl rats. (D) Quantification of protein expression of αENaC, pendrin, total-NCC, T53, T58, and P71-NCC in the membrane fraction isolated from the kidney lysate.

αENaC: epithelial sodium channel alpha-subunit. NCC: thiazide-sensitive Na⁺-Cl⁻ cotransporter.

Control rats (control): rats given a 0.26% NaCl (0.10% Na/0.16% Cl) diet. High-Na/high-Cl rats (high-Na/high-Cl): rats given an 8.0% NaCl (3.14% Na/4.85% Cl) diet. High-Na/half-Cl rats (high-Na/half-Cl): rats given a 4.0% NaCl 6.67% sodium citrate (3.14% Na/2.43% Cl) diet. All rats were subjected to hemi-nephrectomy and aldosterone infusion. Values are mean ± SD.
Dietary intake and blood pressure data at each time point were analyzed using the general linear model, and statistical differences compared with high-Na/half-Cl rats are indicated as § $P < 0.05$. Immunoblot data were analyzed with ANOVA followed by Tukey’s test. Statistical differences are indicated as * $P < 0.05$, ** $P < 0.01$.

Fig. 6. Hydrochlorothiazide attenuated hypertensive nephropathy with inhibition of IL-17 and αSMA expression.

(A) Line graph showing systolic blood pressure measured every week with or without hydrochlorothiazide (HCTZ) treatment. (B) Changes in urinary protein per day. (C) Immunoblot assay showing protein expression of alpha-smooth muscle actin (αSMA) and interleukin 17A (IL-17A) in rats with and without HCTZ treatment. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. (D) Quantification of protein expression of αSMA and IL-17A. HCTZ-treated rats (HCTZ): Aldo/NaCl rats given 25 mg/kg/day hydrochlorothiazide by oral gavage. Vehicle-treated rats (vehicle): Aldo/NaCl rats given distilled water. Values are the mean ± SD. Blood pressure data at each time point were analyzed using the general linear model, and statistical differences compared with vehicle-treated rats are indicated as § $P < 0.05$. The other data were analyzed with Student’s t-test for comparisons between two groups. Statistical differences are indicated as * $P < 0.05$, ** $P < 0.01$.

Fig. 7. Hydrochlorothiazide attenuated the protein expression level of Na$^+$-Cl$^-$ transporter and its phosphorylated forms in the membrane fraction.

(A) Immunoblot assay showing membrane expression of Na$^+$-Cl$^-$ transporters in Aldo/NaCl rats with or without hydrochlorothiazide (HCTZ) treatment. (B) Quantification of protein expression
in the membrane fraction isolated from the kidney of Aldo/NaCl rats with or without HCTZ
treatment. HCTZ-treated rats (HCTZ): Aldo/NaCl rats given 25 mg/kg/day hydrochlorothiazide
by oral gavage. Vehicle-treated rats (vehicle): Aldo/NaCl rats given distilled water. Values are the
mean ± SD. Data were analyzed using Student’s t-test for comparisons between two groups.
Statistical differences are indicated as * $P < 0.05$, ** $P < 0.01$.
Fig. 1

A

Systolic Blood Pressure (mmHg)

Time course (weeks)

0 2 4 0 2 4

sham

Aldo/water

Aldo/NaHCO₃

Aldo/NaCl

B

Urinary excretion of Na⁺ (mEq/day)

Time course (weeks)

0 2 4

sham

Aldo/water

Aldo/NaHCO₃

Aldo/NaCl

Urinary excretion of K⁺ (mEq/day)

Time course (weeks)

0 2 4

sham

Aldo/water

Aldo/NaHCO₃

Aldo/NaCl

Urinary protein excretion (mg/day)

Time course (weeks)

0 2 4

sham

Aldo/water

Aldo/NaHCO₃

Aldo/NaCl
Fig. 2

A

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>Aldo/water</th>
<th>Aldo/NaHCO₃</th>
<th>Aldo/NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>αENaC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Protein expression of αENaC (membrane fraction)

C

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>Aldo/water</th>
<th>Aldo/NaHCO₃</th>
<th>Aldo/NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T53-NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T58-NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P71-NCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

Protein expression of T53-NCC (membrane fraction)

Protein expression of T58-NCC (membrane fraction)

Protein expression of P71-NCC (membrane fraction)
Fig. 4

A

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>Aldo/water</th>
<th>Aldo/NaHCO₃</th>
<th>Aldo/NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- **CD-3**
 - Number of cells (field)
 - ![Graph](image9.png)

- **CD-68**
 - Number of cells (field)
 - ![Graph](image10.png)

C

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>Aldo/water</th>
<th>Aldo/NaHCO₃</th>
<th>Aldo/NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-17A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

- **Relative protein expression of IL-17A/GAPDH**
 - ![Graph](image19.png)
Protein expression of

- **control**
- **high-Na/high-Cl**
- **high-Na/half-Cl**

<table>
<thead>
<tr>
<th>Protein</th>
<th>control</th>
<th>high-Na/high-Cl</th>
<th>high-Na/half-Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>αENaC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T53-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T58-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P71-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protein expression of

- **control**
- **high-CI**
- **half-CI**

<table>
<thead>
<tr>
<th>Protein</th>
<th>control</th>
<th>high-CI</th>
<th>half-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>αENaC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendrin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T53-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T58-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P71-NCC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systolic Blood Pressure (mmHg)

- **control**
- **high-Na/high-Cl**
- **high-Na/half-Cl**

Time course (weeks)

- **control**
- **high-Na/high-Cl**
- **high-Na/half-Cl**

Amount of dietary intake (g/week)

- **control**
- **high-Na/high-Cl**
- **high-Na/half-Cl**

Time course (weeks)
Fig. 6

A

Systolic Blood Pressure (mmHg)

<table>
<thead>
<tr>
<th>Time course (weeks)</th>
<th>baseline</th>
<th>vehicle or HCTZ 25 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>180</td>
<td>200</td>
</tr>
</tbody>
</table>

B

Urinary Protein Excretion (mg/day)

<table>
<thead>
<tr>
<th>Time course (weeks)</th>
<th>vehicle</th>
<th>HCTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

C

- αSMA
- IL-17A
- GAPDH

D

Relative protein expression of αSMA

<table>
<thead>
<tr>
<th></th>
<th>vehicle</th>
<th>HCTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative</td>
<td>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Relative protein expression of IL-17A

<table>
<thead>
<tr>
<th></th>
<th>vehicle</th>
<th>HCTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative</td>
<td>1.5</td>
<td>1</td>
</tr>
</tbody>
</table>
A

<table>
<thead>
<tr>
<th></th>
<th>vehicle</th>
<th>HCTZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>αENaC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T53-NCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T58-NCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P71-NCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- Protein expression of αENaC
- Protein expression of Pendrin
- Protein expression of NCC
- Protein expression of T53-NCC
- Protein expression of T58-NCC
- Protein expression of P71-NCC