Electron Microscopy of Cytodifferentiation and its Subcellular Steroidogenic Sites in the Granulosa Cell of the Human Ovary

Nobutaka NAGAI, Masamichi HIURA and Atsushi FUJIWARA
Department of Obstetrics and Gynecology, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734, Japan
(Received April 22, 1983)

Key words: Electron microscopy, Granulosa cell, Cytodifferentiation, Steroidogenesis, Human ovary

ABSTRACT

The cytodifferentiation and subcellular steroidogenic sites in the granulosa cell of the developing follicle and in vitro effect of estradiol-17β (E2) on the granulosa cell of the prevulatory follicle in the human ovary were investigated using the electron microscopic cytochemistry.

The follicular cell in the primordial follicle showed an elongated nucleus, rough endoplasmic reticulum, Golgi apparatus, rod-shaped mitochondria with lamellar cristae, free ribosomes and a few lipid droplets. In the secondary follicle, the granulosa cell derived from the follicular cell had a round nucleus, rough endoplasmic reticulum, lipid droplets, Golgi apparatus, microfilament, mitochondria with lamellar or tubular cristae and a small amount of smooth endoplasmic reticulum. Especially, the granulosa cell in the preovulatory follicle considered to be a transitional form to the steroid-secreting cell was characteristic of rough endoplasmic reticulum, lipid droplets, mitochondria with lamellar or tubular cristae and moderately well developed smooth endoplasmic reticulum.

On the other hand, the granulosa cell in the postovulatory follicle showing a typical steroid-secreting activity had abundant lipid droplets, round mitochondrial with tubular or vesicular cristae, well developed smooth endoplasmic reticulum and lysosomes.

The hallmarks of the cytodifferentiation of the granulosa cell were i) an appearance of lipid droplets, ii) a structural change of mitochondrial cristae from lamellar to tubular configuration and iii) an appearance and development of smooth endoplasmic reticulum.

Reaction products for 3β-hydroxysteroid dehydrogenase (3β-HSD) activity were localized on tubular or lamellar cristae and inner membrane of the mitochondria, and on the membrane of smooth endoplasmic reticulum in the granulosa cell of the preovulatory as well as of the postovulatory follicle.

The granulosa cell of the preovulatory follicle incubated in the medium containing E2 showed a structural change of mitochondrial cristae from lamellar to tubular configuration, and an appearance and development of smooth endoplasmic reticulum.

From these facts, it is suggested that the granulosa cell in the preovulatory follicle has already a steroid-secreting activity and luteinizes abruptly, and E2 contained in the culture medium could stimulate the functional differentiation of the granulosa cell in the prevulatory follicle affected with gonadotrophin.

INTRODUCTION

It is well known that granulosa cells and theca cells become corpus lutein cells after the...
ovulation. The fine structural change of granulosa cells at this stage, which have a receptor of estradiol-17β (E₂) as a target, is an interesting problem for the functional morphology of steroidogenesis. Though many investigators reported the ultrastructural change of luteinization of the granulosa cell in the mammalian ovary (Björkman 1962a; Blanchette 1966b; Weakley 1966c; Bjersing 1967d; Byskov 1967e), little is known about the functional differentiation of the early granulosa cell at the preovulatory as well as ovulatory stage of the human ovary.

The purpose of this study was planned to investigate the morphological changes and the localization of 3β-dihydroxysteroid dehydrogenase (3β-HSD) activity in the granulosa cell of the developing follicle and the effect of E₂ on the functional differentiation of the granulosa cell in cultured human preovulatory follicle affected with gonadotrophin.

MATERIALS AND METHODS

Ten human ovaries in the follicular phase and in the postovulatory phase were removed by wedge resection. The specimens were fixed for 2 h with 2.5% glutaraldehyde solution adjusted to pH 7.4 with 0.1 M cacodylate buffer, refixed for 1 h with 2% O₃O₄ adjusted to pH 7.4 with 0.1 M cacodylate buffer. A portion of the unfixed or fixed materials were incubated for 15 min at room temperature using the ferrocyanide technique of Benko el al. (1976). The incubation medium consisted of 1.2 mg dehydroepiandrosterone in 1.5 ml of dimethylformamide, 12.5 ml of 0.1 M cacodylate buffer, pH 7.4, 2 ml of 0.1 M sodium citrate, 2 ml of 15 mM potassium ferricyanide solution, 2 ml of 90 mM copper sulfate solution, 2 g sucrose and 7.2 mg N.A.D. After incubation, the specimens were washed with 0.1 M cacodylate buffer and postfixed for 1 h with 2% O₃O₄ adjusted to pH 7.4 with 0.1 M cacodylate buffer.

The preovulatory follicle was incubated with McCoy's 5a medium containing 10⁻⁸M E₂ (Sigma) at 37°C for 3 h in a mixture of 95% air and 5% CO₂. These materials were then dehydrated in ethanol and embedded in Poly Bed 812. Sections cut on a Porter-Blum MT-1 ultramicrotome, stained with Reynold's lead solution and coated with carbon were examined with Hitachi HU-12A type and Hitachi H-300 type electron microscopes. Control incubation was done respectively by omitting the substrate or E₂ from the medium.

For light microscopy, thick sections were stained with 0.5% toluidine blue solution.

RESULTS

Light microscopy

The primordial follicle was composed of one layer of the flattened follicular cells (pre-granulosa cells) and an oocyte. Among these follicles were connective tissue cells with elongated nuclei (Fig. 1).

The secondary follicle showed several layers of granulosa cells, cuboidal or columnar in shape, and somewhat eosinophilic cytoplasm (Fig. 1).

Though numerous granulosa cells in the preovulatory follicle have an oval nucleus and relatively basophilic (Fig. 2), they become eosinophilic and rich in abundant lipid droplets at the postovulatory stage (Fig. 3).

Electron Microscopy

Granulosa cells in the primordial and secondary follicle

In the preovulatory follicle, the granulosa cells, considered to be a transitional form to the steroid-secreting cells, contained round nuclei, rough endoplasmic reticulum, Golgi apparatus, elongated mitochondria with lamellar cristae and free ribosomes. Some of them had already a few lipid droplets in their cytoplasms (Fig. 4).

In the postovulatory follicle, they showed a typical steroid-secreting appearance having round nuclei, Golgi apparatus, lipid droplets, round
mitochondria with tubular or vesicular cristae, smooth endoplasmic reticulum and lysosomes (Fig. 7).

**Ultracytochemical localization of 3β-hydroxysteroid dehydrogenase (3β-HSD) activity**

Reaction products for 3β-HSD activity were localized on tubular or lamellar cristae and inner membrane of the mitochondria, and on the membrane of smooth endoplasmic reticulum in the granulosa cell of the preovulatory as well as of the postovulatory follicle (Figs. 8, 9 and 10). No reaction products were recognized in these cell types incubated in the control medium without substrates.

**Effect of estradiol-17β (E₂) on the cultured granulosa cell**

The granulosa cells in the control section incubated without E₂ were quite similar in appearance to those in the preovulatory follicle (Fig. 11).

On the other hand, the granulosa cells incubated with E₂ revealed a structural change of mitochondrial cristae from lamellar to tubular configuration and an appearance and development of smooth endoplasmic reticulum (Figs. 12 and 13).

**DISCUSSION**

The fine structural change of granulosa cells between preovulatory and postovulatory follicle is most characteristic (Mestwert et al. 197711, 197912). In primordial and secondary follicle, the granulosa cells had a moderate development in the cell organelles with rough endoplasmic reticulum, moderately developed Golgi apparatus, mainly rod-shaped mitochondria with lamellar cristae, free ribosomes. Mitotic figures of the granulosa cells have been frequently seen.

In our observations, follicular cells (pre-granulosa cells) in the primordial follicle had already a few lipid droplets. The lipid droplets increase in number in the granulosa cells, as the follicle matures. In the preovulatory follicle, granulosa cells show lipid droplets, mitochondria with lamellar or tubular cristae, smooth endoplasmic reticulum and lysosomes. The structural change from lamellar to tubular configuration in the mitochondrial cristae is known to be an early indicator for steroidogenesis (Dimino et al. 197910; Hiura et al. 198110). In the granulosa cells in the postovulatory follicle, these characteristic structures become more prominent. The cell has abundant lipid droplets, round mitochondria with tubular or vesicular cristae and well developed smooth endoplasmic reticulum.

From these facts, it is suggested that the granulosa cells might have already a steroidogenesis at the preovulatory stage. Clinically it is known that the slight elevation of the plasma progesterone occurs just before the ovulation.

According to Samuel et al. (1951)14, this enzyme 3β-HSD plays an important role in the biosynthesis of the active steroid hormone. The ultracytochemical technique for 3β-HSD is very useful to clarify whether or not these granulosa cells in transitional form in the preovulatory follicle have a steroidogenic activity. Reaction products of copper ferrocyanide for 3β-HSD activity were localized on tubular or lamellar cristae and inner membranes of the mitochondria, on the membranes of smooth endoplasmic reticulum in the granulosa cells of the preovulatory as well as postovulatory follicle.

These facts also mean that the granulosa cells in both preovulatory and postovulatory follicles have a steroidogenic activity.

It has been reported that the cultured granulosa cells showed “luteinization” and differentiation into the steroid-secreting cells without any hormonal stimulation (Crip and Channing 19727; Suzuki et al. 197615). However, Goldenberg et al. (1972)9 and Nakano et al. (1977)13 emphasized that E₂ is necessary to induce the proliferation of the granulosa cells under the interaction of gonadotrophic hormone and Bernard (1975)20 also recognized that E₂ stimulates progesterone secretion by rat granulosa cell in culture.

In our experiment, the granulosa cells from the preovulatory follicle cultured in the medium containing E₂ showed the following ultrastructural changes: mitochondrial changes from lamellar to tubular in cristae, and appearance and development of smooth endoplasmic reticulum. This fact suggests that E₂ might influence not only the proliferation but also the functional differentiation (luteinization) of the granulosa cells of the preovulatory follicle exposed to some extent to gonadotrophin.
ACKNOWLEDGEMENTS

The authors are grateful to professor H. Fujita (Department of Anatomy, Osaka University Medical School) for his kind discussion.

REFERENCES

Steroidogenic Sites of the Granulosa Cell

Fig. 1. Two primordial follicles composed of one layer of flattened follicular cells (left lower), and the secondary follicle with several layers of the granulosa cells (upper). $\times 530$

Fig. 2. The preovulatory follicle with multi-layers of the granulosa cells (upper) and hypertrophied theca interna (lower). $\times 280$

Fig. 3. The postovulatory follicle with numerous granulosa lutein cells (G) containing round nuclei and abundant lipid droplets. $\times 220$
Fig. 4. The primordial follicle consisting of one layer of follicular cells. Some of which have a few lipid droplets (L) in the cytoplasm. ×6,000

Fig. 5. Parts of granulosa cells in the secondary follicle. Lipid droplet (L), microfilaments, poorly developed rough endoplasmic reticulum and mitochondria with lamellar cristae are seen. N: nucleus ×8,700
Fig. 6. A part of the granulosa cell which might be a transitional form to the steroid-secreting cell in the prevulatory follicle. Lipid droplets (L), rough endoplasmic reticulum, smooth endoplasmic reticulum, Golgi apparatus (G), mitochondria with lamellar or tubular cristae and free ribosomes are seen. ×15,000

Fig. 7. A part of the granulosa cell in the postovulatory follicle. Lipid droplets (L), round mitochondria with tubular cristae (M), smooth endoplasmic reticulum and lysosome (S) are seen. ×15,000
Fig. 8. 3β-dydroxysteroid dehydrogenase activity in the granulosa cell of the preovulatory follicle. Reaction products (v) are localized on tubular or lamellar cristae and inner membrane of the mitochondria and on the membranes of smooth endoplasmic reticulum. ×28,800

Fig. 9. 3β-dydroxysteroid dehydrogenase activity in the granulosa cell of the preovulatory follicle. Reaction products (v) are localized on lamellar cristae and inner membrane of the mitochondria, and on the membranes of smooth endoplasmic reticulum. ×30,000
**Fig. 10.** $3\beta$-hydroxysteroid dehydrogenase activity in the granulosa cell of the postovulatory follicle. Reaction products (v) are localized on tubular cristae and inner membrane of the mitochondria, and on the membrane of smooth endoplasmic reticulum. $\times 23,000$

**Fig. 11.** A part of the granulosa cell of the preovulatory follicle incubated in the control medium. Lipid droplets, microfilaments, mitochondria with lamellar or tubular cristae, rough endoplasmic reticulum are seen. $\times 10,200$
Fig. 12. Parts of the granulosa cells of the preovulatory follicle incubated in the medium containing E₂. Rough endoplasmic reticulum, round mitochondria with tubular cristae (M) and well developed smooth endoplasmic reticulum (arrow) are seen. ×16,000

Fig. 13. Parts of the granulosa cell of the preovulatory follicle incubated in the medium containing E₂. Lipid droplets (L), mitochondria with lamellar or tubular cristae (M), well developed smooth endoplasmic reticulum (arrow) are seen. ×12,000