Chromosome Analysis of Bone Marrow Fibroblast Colony-Forming Cells (CFU-F) in Heavily Exposed Atomic Bomb Survivors*

Chiharu SHIGETA, Kimio TANAKA, Masahito KAWAKAMI and Takeshi OHKIT

Department of Hematology, Research Institute for Nuclear Medicine & Biology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734, Japan

Received September 18, 1984

Key words: Chromosome aberration, Atomic bomb survivor, Fibroblast, CFU-F

ABSTRACT

A chromosome analysis was performed on cultured bone marrow fibroblasts (CFU-F) from two atomic bomb survivors exposed within 1 km of the hypocenter, whose estimated radiation dose is 357 rad and 365 rad respectively. In CFU-F of both cases, stable types of chromosome aberrations were detected. The rate of these chromosome aberrations related well to the chromosome aberration rate of peripheral T-lymphocytes of the same case. These findings suggest the possibility that chromosome aberration exists in somatic cells other than hematopoietic cells of heavily exposed atomic bomb survivors.

INTRODUCTION

An elevated incidence of leukemia and malignant tumors has been observed as late radiation effects among atomic bomb survivors. Furthermore, a positive correlation has been demonstrated between chromosome aberrations of somatic cells of atomic bomb survivors and their radiation exposure dose10. Today some 40 years after exposure to the atomic bomb even among healthy proximal exposed survivors with normal hematological values, a high frequency of chromosome aberrations has been seen in bone marrow cells and T- and B-lymphocytes11. In addition, as chromosome aberrations observed in T lymphocytes of proximal exposed survivors appear in a high frequency among chromosomes closely related to chromosome aberrations demonstrated in leukemia cells12, interest is now focussed on the relation between the mechanism of leukogenesis and chromosome breaks and translocations at the oncogene sites.

With the recent advances made in the techniques of blood cell culture, the presence of chromosome aberrations has been demonstrated even in the hematopoietic stem cell level16. It is considered that the proliferation of blood cells is under some control from the interaction between progenitor cells and their hematopoietic environment. Directing our attention to myelofibroblasts as one of the components of the hematopoietic environment, we conducted a chromosome analysis on colony forming unit of fibroblasts (CFU-F) of proximal exposed survivors.

SUBJECTS AND METHODS

The subjects of the present study are two healthy female A-bomb survivors exposed within 1 km from the hypocenter in Hiroshima with no abnormal hematological findings at present. Their age at time of exposure was 20 and 22 and their estimated T65D radiation exposure dose is 357 rad and 365 rad, respectively.

METHOD OF COLONY ASSAY AND CHROMOSOME ANALYSIS

5 × 10⁶ bone marrow mononuclear cells iso-

---

*1 重田千緒, 田中公夫, 川上正仁, 大北 唯: 近距離原爆被爆者における骨髄綱維芽細胞 (CFU-F) の染色体分析
Table 1. Chromosome analysis of cultured bone marrow fibroblasts (CFU-F) in atomic bomb survivors

<table>
<thead>
<tr>
<th>Case</th>
<th>Estimated radiation dose (T65D) analyse</th>
<th>No. of cells analysed</th>
<th>No. of cells with abnormal karyotype</th>
<th>Chromosome aberration rate (%) in T-lymphocyte</th>
<th>Chromosome aberration rate in fibroblast (CFU-F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>357 rad</td>
<td>21</td>
<td>3</td>
<td>14.8</td>
<td>46, XX, t (14p;15p), inv (5) (p-q+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46, XX, 6q−</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46, XX, −20, +mar</td>
</tr>
<tr>
<td>2</td>
<td>365 rad</td>
<td>7</td>
<td>2</td>
<td>28.6</td>
<td>46, XX, t (Cq−;Fq+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47, XX, t (Cq−;Fq+), Cq−, +mar</td>
</tr>
</tbody>
</table>

RESULTS

The results of chromosome analysis of bone marrow CFU-F colony obtained by the foregoing method are shown in Table 1. In case 1, of the 21 observed cells chromosome aberrations were observed in 3 cells (chromosome aberration rate of 14.3%) and in the remaining case, of the 7 observed metaphases chromosome aberrations were observed in 2 cells (chromosome aberration rate of 28.6%). In case 1, the abnormal karyotypes were 46, XX, t (14p;15p), inv (5) (p-q+); 46, XX, 6q−; 46, XX, −20, and +mar, while in Case 2, the abnormal karyotypes were 46, XX, t (Cq−;Fq+); 47, XX, t (Cq−;Fq+), Cq−, and +mar. All the detected abnormal karyotypes were abnormalities of stable type such as translocation, inversion, and deletion (Fig. 1).

DISCUSSION

Even today some 40 years after exposure to the atomic bomb, chromosome aberrations are observed in a high frequency in the bone marrow cells, T- and B-lymphocytes and skin fibroblasts of proximal exposed survivors whose hematopoietic tissue is assumed to have received a serious damage from radiation exposure. However, abnormal values are not necessarily observed in the routine blood tests of these survivors harboring such chromosome aberration in the hematopoietic cells and the biological implication of the organic abnormalities of these cells still remains unknown.

With the developments made in in vitro colony assay methods, it has become possible to pursue hematological disorders and malignant transformation at the hematopoietic stem cell level. For example, in chronic myelogenous leukemia chromosome aberration has been detected at the pluripotent stem cell level, suggesting a relationship between chromosome...
aberration and leukemogenesis. Our chromosome analysis of bone marrow erythroid colony of the two proximal exposed survivors has shown that the chromosome aberration rate shows a good correlation with the chromosome aberration rate observed in the peripheral T-lymphocytes of the same case. These findings indicate that the bone marrow cells and T- and B-cells of atomic bomb survivors have already at the stem cell level chromosome aberrations and suggests at the same time a possibility of a deep relationship to the process of leukemogenesis.

On the other hand, much importance is attached also to the role played by bone marrow stromal cells in the environment of proliferation and maturation of bone marrow hematopoietic progenitors. In recent years studies have been made on fibroblasts, one of the stromal cells, with attention given to the character of their progenitor cells as CFU-F and to their function in hematopoiesis, but little has been reported on cytogenetic aspects of CFU-F. We conducted a chromosome analysis with the use of CFU-F of a Ph1 positive chronic myelogenous leukemia case exposed at a distance of 1.9 km, but Ph1 chromosome could not be detected in the fibroblast of this case. Excluding one case reported by Hentel et al., other workers have also reported only observing normal karyotype in their chromosome analysis of CFU-F of Ph1 positive chronic myelogenous leukemia cases. In view of the fact that marker chromosomes could not be detected in CFU-F of bone marrow origin of chronic myelogenous leukemia patients and of the results of Fialkow on G6PD isoenzyme, it is the opinion of the majority that the origin of CFU-F and of hematopoietic stem cells differs. This detection of chromosome aberrations in both the colony of hematopoietic stem cell origin and in stromal cells considered to have a different origin suggests the possibility that chromosome aberrations exist in somatic cells outside the hematopoietic organs. In proximal exposed survivors it is known that the incidence of not only leukemia but also other malignant tumors is high. The very interesting findings suggesting a relation between carcinogenesis of other organs and chromosome aberrations indicate that further studies should be made.

REFERENCES


